Statistiques
| Révision :

root / src / lapack / double / dgeqrf.f @ 2

Historique | Voir | Annoter | Télécharger (5,74 ko)

1 1 equemene
      SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
2 1 equemene
*
3 1 equemene
*  -- LAPACK routine (version 3.2) --
4 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 equemene
*     November 2006
7 1 equemene
*
8 1 equemene
*     .. Scalar Arguments ..
9 1 equemene
      INTEGER            INFO, LDA, LWORK, M, N
10 1 equemene
*     ..
11 1 equemene
*     .. Array Arguments ..
12 1 equemene
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
13 1 equemene
*     ..
14 1 equemene
*
15 1 equemene
*  Purpose
16 1 equemene
*  =======
17 1 equemene
*
18 1 equemene
*  DGEQRF computes a QR factorization of a real M-by-N matrix A:
19 1 equemene
*  A = Q * R.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  =========
23 1 equemene
*
24 1 equemene
*  M       (input) INTEGER
25 1 equemene
*          The number of rows of the matrix A.  M >= 0.
26 1 equemene
*
27 1 equemene
*  N       (input) INTEGER
28 1 equemene
*          The number of columns of the matrix A.  N >= 0.
29 1 equemene
*
30 1 equemene
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
31 1 equemene
*          On entry, the M-by-N matrix A.
32 1 equemene
*          On exit, the elements on and above the diagonal of the array
33 1 equemene
*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
34 1 equemene
*          upper triangular if m >= n); the elements below the diagonal,
35 1 equemene
*          with the array TAU, represent the orthogonal matrix Q as a
36 1 equemene
*          product of min(m,n) elementary reflectors (see Further
37 1 equemene
*          Details).
38 1 equemene
*
39 1 equemene
*  LDA     (input) INTEGER
40 1 equemene
*          The leading dimension of the array A.  LDA >= max(1,M).
41 1 equemene
*
42 1 equemene
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
43 1 equemene
*          The scalar factors of the elementary reflectors (see Further
44 1 equemene
*          Details).
45 1 equemene
*
46 1 equemene
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
47 1 equemene
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
48 1 equemene
*
49 1 equemene
*  LWORK   (input) INTEGER
50 1 equemene
*          The dimension of the array WORK.  LWORK >= max(1,N).
51 1 equemene
*          For optimum performance LWORK >= N*NB, where NB is
52 1 equemene
*          the optimal blocksize.
53 1 equemene
*
54 1 equemene
*          If LWORK = -1, then a workspace query is assumed; the routine
55 1 equemene
*          only calculates the optimal size of the WORK array, returns
56 1 equemene
*          this value as the first entry of the WORK array, and no error
57 1 equemene
*          message related to LWORK is issued by XERBLA.
58 1 equemene
*
59 1 equemene
*  INFO    (output) INTEGER
60 1 equemene
*          = 0:  successful exit
61 1 equemene
*          < 0:  if INFO = -i, the i-th argument had an illegal value
62 1 equemene
*
63 1 equemene
*  Further Details
64 1 equemene
*  ===============
65 1 equemene
*
66 1 equemene
*  The matrix Q is represented as a product of elementary reflectors
67 1 equemene
*
68 1 equemene
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
69 1 equemene
*
70 1 equemene
*  Each H(i) has the form
71 1 equemene
*
72 1 equemene
*     H(i) = I - tau * v * v'
73 1 equemene
*
74 1 equemene
*  where tau is a real scalar, and v is a real vector with
75 1 equemene
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
76 1 equemene
*  and tau in TAU(i).
77 1 equemene
*
78 1 equemene
*  =====================================================================
79 1 equemene
*
80 1 equemene
*     .. Local Scalars ..
81 1 equemene
      LOGICAL            LQUERY
82 1 equemene
      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
83 1 equemene
     $                   NBMIN, NX
84 1 equemene
*     ..
85 1 equemene
*     .. External Subroutines ..
86 1 equemene
      EXTERNAL           DGEQR2, DLARFB, DLARFT, XERBLA
87 1 equemene
*     ..
88 1 equemene
*     .. Intrinsic Functions ..
89 1 equemene
      INTRINSIC          MAX, MIN
90 1 equemene
*     ..
91 1 equemene
*     .. External Functions ..
92 1 equemene
      INTEGER            ILAENV
93 1 equemene
      EXTERNAL           ILAENV
94 1 equemene
*     ..
95 1 equemene
*     .. Executable Statements ..
96 1 equemene
*
97 1 equemene
*     Test the input arguments
98 1 equemene
*
99 1 equemene
      INFO = 0
100 1 equemene
      NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
101 1 equemene
      LWKOPT = N*NB
102 1 equemene
      WORK( 1 ) = LWKOPT
103 1 equemene
      LQUERY = ( LWORK.EQ.-1 )
104 1 equemene
      IF( M.LT.0 ) THEN
105 1 equemene
         INFO = -1
106 1 equemene
      ELSE IF( N.LT.0 ) THEN
107 1 equemene
         INFO = -2
108 1 equemene
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
109 1 equemene
         INFO = -4
110 1 equemene
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
111 1 equemene
         INFO = -7
112 1 equemene
      END IF
113 1 equemene
      IF( INFO.NE.0 ) THEN
114 1 equemene
         CALL XERBLA( 'DGEQRF', -INFO )
115 1 equemene
         RETURN
116 1 equemene
      ELSE IF( LQUERY ) THEN
117 1 equemene
         RETURN
118 1 equemene
      END IF
119 1 equemene
*
120 1 equemene
*     Quick return if possible
121 1 equemene
*
122 1 equemene
      K = MIN( M, N )
123 1 equemene
      IF( K.EQ.0 ) THEN
124 1 equemene
         WORK( 1 ) = 1
125 1 equemene
         RETURN
126 1 equemene
      END IF
127 1 equemene
*
128 1 equemene
      NBMIN = 2
129 1 equemene
      NX = 0
130 1 equemene
      IWS = N
131 1 equemene
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
132 1 equemene
*
133 1 equemene
*        Determine when to cross over from blocked to unblocked code.
134 1 equemene
*
135 1 equemene
         NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
136 1 equemene
         IF( NX.LT.K ) THEN
137 1 equemene
*
138 1 equemene
*           Determine if workspace is large enough for blocked code.
139 1 equemene
*
140 1 equemene
            LDWORK = N
141 1 equemene
            IWS = LDWORK*NB
142 1 equemene
            IF( LWORK.LT.IWS ) THEN
143 1 equemene
*
144 1 equemene
*              Not enough workspace to use optimal NB:  reduce NB and
145 1 equemene
*              determine the minimum value of NB.
146 1 equemene
*
147 1 equemene
               NB = LWORK / LDWORK
148 1 equemene
               NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1,
149 1 equemene
     $                 -1 ) )
150 1 equemene
            END IF
151 1 equemene
         END IF
152 1 equemene
      END IF
153 1 equemene
*
154 1 equemene
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
155 1 equemene
*
156 1 equemene
*        Use blocked code initially
157 1 equemene
*
158 1 equemene
         DO 10 I = 1, K - NX, NB
159 1 equemene
            IB = MIN( K-I+1, NB )
160 1 equemene
*
161 1 equemene
*           Compute the QR factorization of the current block
162 1 equemene
*           A(i:m,i:i+ib-1)
163 1 equemene
*
164 1 equemene
            CALL DGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
165 1 equemene
     $                   IINFO )
166 1 equemene
            IF( I+IB.LE.N ) THEN
167 1 equemene
*
168 1 equemene
*              Form the triangular factor of the block reflector
169 1 equemene
*              H = H(i) H(i+1) . . . H(i+ib-1)
170 1 equemene
*
171 1 equemene
               CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
172 1 equemene
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
173 1 equemene
*
174 1 equemene
*              Apply H' to A(i:m,i+ib:n) from the left
175 1 equemene
*
176 1 equemene
               CALL DLARFB( 'Left', 'Transpose', 'Forward',
177 1 equemene
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
178 1 equemene
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
179 1 equemene
     $                      LDA, WORK( IB+1 ), LDWORK )
180 1 equemene
            END IF
181 1 equemene
   10    CONTINUE
182 1 equemene
      ELSE
183 1 equemene
         I = 1
184 1 equemene
      END IF
185 1 equemene
*
186 1 equemene
*     Use unblocked code to factor the last or only block.
187 1 equemene
*
188 1 equemene
      IF( I.LE.K )
189 1 equemene
     $   CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
190 1 equemene
     $                IINFO )
191 1 equemene
*
192 1 equemene
      WORK( 1 ) = IWS
193 1 equemene
      RETURN
194 1 equemene
*
195 1 equemene
*     End of DGEQRF
196 1 equemene
*
197 1 equemene
      END