root / src / lapack / double / dgeqr2.f @ 2
Historique | Voir | Annoter | Télécharger (3,33 ko)
1 | 1 | equemene | SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK routine (version 3.2.2) -- |
4 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 | 1 | equemene | * June 2010 |
7 | 1 | equemene | * |
8 | 1 | equemene | * .. Scalar Arguments .. |
9 | 1 | equemene | INTEGER INFO, LDA, M, N |
10 | 1 | equemene | * .. |
11 | 1 | equemene | * .. Array Arguments .. |
12 | 1 | equemene | DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) |
13 | 1 | equemene | * .. |
14 | 1 | equemene | * |
15 | 1 | equemene | * Purpose |
16 | 1 | equemene | * ======= |
17 | 1 | equemene | * |
18 | 1 | equemene | * DGEQR2 computes a QR factorization of a real m by n matrix A: |
19 | 1 | equemene | * A = Q * R. |
20 | 1 | equemene | * |
21 | 1 | equemene | * Arguments |
22 | 1 | equemene | * ========= |
23 | 1 | equemene | * |
24 | 1 | equemene | * M (input) INTEGER |
25 | 1 | equemene | * The number of rows of the matrix A. M >= 0. |
26 | 1 | equemene | * |
27 | 1 | equemene | * N (input) INTEGER |
28 | 1 | equemene | * The number of columns of the matrix A. N >= 0. |
29 | 1 | equemene | * |
30 | 1 | equemene | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
31 | 1 | equemene | * On entry, the m by n matrix A. |
32 | 1 | equemene | * On exit, the elements on and above the diagonal of the array |
33 | 1 | equemene | * contain the min(m,n) by n upper trapezoidal matrix R (R is |
34 | 1 | equemene | * upper triangular if m >= n); the elements below the diagonal, |
35 | 1 | equemene | * with the array TAU, represent the orthogonal matrix Q as a |
36 | 1 | equemene | * product of elementary reflectors (see Further Details). |
37 | 1 | equemene | * |
38 | 1 | equemene | * LDA (input) INTEGER |
39 | 1 | equemene | * The leading dimension of the array A. LDA >= max(1,M). |
40 | 1 | equemene | * |
41 | 1 | equemene | * TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) |
42 | 1 | equemene | * The scalar factors of the elementary reflectors (see Further |
43 | 1 | equemene | * Details). |
44 | 1 | equemene | * |
45 | 1 | equemene | * WORK (workspace) DOUBLE PRECISION array, dimension (N) |
46 | 1 | equemene | * |
47 | 1 | equemene | * INFO (output) INTEGER |
48 | 1 | equemene | * = 0: successful exit |
49 | 1 | equemene | * < 0: if INFO = -i, the i-th argument had an illegal value |
50 | 1 | equemene | * |
51 | 1 | equemene | * Further Details |
52 | 1 | equemene | * =============== |
53 | 1 | equemene | * |
54 | 1 | equemene | * The matrix Q is represented as a product of elementary reflectors |
55 | 1 | equemene | * |
56 | 1 | equemene | * Q = H(1) H(2) . . . H(k), where k = min(m,n). |
57 | 1 | equemene | * |
58 | 1 | equemene | * Each H(i) has the form |
59 | 1 | equemene | * |
60 | 1 | equemene | * H(i) = I - tau * v * v' |
61 | 1 | equemene | * |
62 | 1 | equemene | * where tau is a real scalar, and v is a real vector with |
63 | 1 | equemene | * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), |
64 | 1 | equemene | * and tau in TAU(i). |
65 | 1 | equemene | * |
66 | 1 | equemene | * ===================================================================== |
67 | 1 | equemene | * |
68 | 1 | equemene | * .. Parameters .. |
69 | 1 | equemene | DOUBLE PRECISION ONE |
70 | 1 | equemene | PARAMETER ( ONE = 1.0D+0 ) |
71 | 1 | equemene | * .. |
72 | 1 | equemene | * .. Local Scalars .. |
73 | 1 | equemene | INTEGER I, K |
74 | 1 | equemene | DOUBLE PRECISION AII |
75 | 1 | equemene | * .. |
76 | 1 | equemene | * .. External Subroutines .. |
77 | 1 | equemene | EXTERNAL DLARF, DLARFG, XERBLA |
78 | 1 | equemene | * .. |
79 | 1 | equemene | * .. Intrinsic Functions .. |
80 | 1 | equemene | INTRINSIC MAX, MIN |
81 | 1 | equemene | * .. |
82 | 1 | equemene | * .. Executable Statements .. |
83 | 1 | equemene | * |
84 | 1 | equemene | * Test the input arguments |
85 | 1 | equemene | * |
86 | 1 | equemene | INFO = 0 |
87 | 1 | equemene | IF( M.LT.0 ) THEN |
88 | 1 | equemene | INFO = -1 |
89 | 1 | equemene | ELSE IF( N.LT.0 ) THEN |
90 | 1 | equemene | INFO = -2 |
91 | 1 | equemene | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN |
92 | 1 | equemene | INFO = -4 |
93 | 1 | equemene | END IF |
94 | 1 | equemene | IF( INFO.NE.0 ) THEN |
95 | 1 | equemene | CALL XERBLA( 'DGEQR2', -INFO ) |
96 | 1 | equemene | RETURN |
97 | 1 | equemene | END IF |
98 | 1 | equemene | * |
99 | 1 | equemene | K = MIN( M, N ) |
100 | 1 | equemene | * |
101 | 1 | equemene | DO 10 I = 1, K |
102 | 1 | equemene | * |
103 | 1 | equemene | * Generate elementary reflector H(i) to annihilate A(i+1:m,i) |
104 | 1 | equemene | * |
105 | 1 | equemene | CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1, |
106 | 1 | equemene | $ TAU( I ) ) |
107 | 1 | equemene | IF( I.LT.N ) THEN |
108 | 1 | equemene | * |
109 | 1 | equemene | * Apply H(i) to A(i:m,i+1:n) from the left |
110 | 1 | equemene | * |
111 | 1 | equemene | AII = A( I, I ) |
112 | 1 | equemene | A( I, I ) = ONE |
113 | 1 | equemene | CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ), |
114 | 1 | equemene | $ A( I, I+1 ), LDA, WORK ) |
115 | 1 | equemene | A( I, I ) = AII |
116 | 1 | equemene | END IF |
117 | 1 | equemene | 10 CONTINUE |
118 | 1 | equemene | RETURN |
119 | 1 | equemene | * |
120 | 1 | equemene | * End of DGEQR2 |
121 | 1 | equemene | * |
122 | 1 | equemene | END |