Statistiques
| Révision :

root / src / lapack / double / dgelqf.f @ 2

Historique | Voir | Annoter | Télécharger (5,72 ko)

1 1 equemene
      SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
2 1 equemene
*
3 1 equemene
*  -- LAPACK routine (version 3.2) --
4 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 equemene
*     November 2006
7 1 equemene
*
8 1 equemene
*     .. Scalar Arguments ..
9 1 equemene
      INTEGER            INFO, LDA, LWORK, M, N
10 1 equemene
*     ..
11 1 equemene
*     .. Array Arguments ..
12 1 equemene
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
13 1 equemene
*     ..
14 1 equemene
*
15 1 equemene
*  Purpose
16 1 equemene
*  =======
17 1 equemene
*
18 1 equemene
*  DGELQF computes an LQ factorization of a real M-by-N matrix A:
19 1 equemene
*  A = L * Q.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  =========
23 1 equemene
*
24 1 equemene
*  M       (input) INTEGER
25 1 equemene
*          The number of rows of the matrix A.  M >= 0.
26 1 equemene
*
27 1 equemene
*  N       (input) INTEGER
28 1 equemene
*          The number of columns of the matrix A.  N >= 0.
29 1 equemene
*
30 1 equemene
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
31 1 equemene
*          On entry, the M-by-N matrix A.
32 1 equemene
*          On exit, the elements on and below the diagonal of the array
33 1 equemene
*          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
34 1 equemene
*          lower triangular if m <= n); the elements above the diagonal,
35 1 equemene
*          with the array TAU, represent the orthogonal matrix Q as a
36 1 equemene
*          product of elementary reflectors (see Further Details).
37 1 equemene
*
38 1 equemene
*  LDA     (input) INTEGER
39 1 equemene
*          The leading dimension of the array A.  LDA >= max(1,M).
40 1 equemene
*
41 1 equemene
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
42 1 equemene
*          The scalar factors of the elementary reflectors (see Further
43 1 equemene
*          Details).
44 1 equemene
*
45 1 equemene
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
46 1 equemene
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
47 1 equemene
*
48 1 equemene
*  LWORK   (input) INTEGER
49 1 equemene
*          The dimension of the array WORK.  LWORK >= max(1,M).
50 1 equemene
*          For optimum performance LWORK >= M*NB, where NB is the
51 1 equemene
*          optimal blocksize.
52 1 equemene
*
53 1 equemene
*          If LWORK = -1, then a workspace query is assumed; the routine
54 1 equemene
*          only calculates the optimal size of the WORK array, returns
55 1 equemene
*          this value as the first entry of the WORK array, and no error
56 1 equemene
*          message related to LWORK is issued by XERBLA.
57 1 equemene
*
58 1 equemene
*  INFO    (output) INTEGER
59 1 equemene
*          = 0:  successful exit
60 1 equemene
*          < 0:  if INFO = -i, the i-th argument had an illegal value
61 1 equemene
*
62 1 equemene
*  Further Details
63 1 equemene
*  ===============
64 1 equemene
*
65 1 equemene
*  The matrix Q is represented as a product of elementary reflectors
66 1 equemene
*
67 1 equemene
*     Q = H(k) . . . H(2) H(1), where k = min(m,n).
68 1 equemene
*
69 1 equemene
*  Each H(i) has the form
70 1 equemene
*
71 1 equemene
*     H(i) = I - tau * v * v'
72 1 equemene
*
73 1 equemene
*  where tau is a real scalar, and v is a real vector with
74 1 equemene
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
75 1 equemene
*  and tau in TAU(i).
76 1 equemene
*
77 1 equemene
*  =====================================================================
78 1 equemene
*
79 1 equemene
*     .. Local Scalars ..
80 1 equemene
      LOGICAL            LQUERY
81 1 equemene
      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
82 1 equemene
     $                   NBMIN, NX
83 1 equemene
*     ..
84 1 equemene
*     .. External Subroutines ..
85 1 equemene
      EXTERNAL           DGELQ2, DLARFB, DLARFT, XERBLA
86 1 equemene
*     ..
87 1 equemene
*     .. Intrinsic Functions ..
88 1 equemene
      INTRINSIC          MAX, MIN
89 1 equemene
*     ..
90 1 equemene
*     .. External Functions ..
91 1 equemene
      INTEGER            ILAENV
92 1 equemene
      EXTERNAL           ILAENV
93 1 equemene
*     ..
94 1 equemene
*     .. Executable Statements ..
95 1 equemene
*
96 1 equemene
*     Test the input arguments
97 1 equemene
*
98 1 equemene
      INFO = 0
99 1 equemene
      NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
100 1 equemene
      LWKOPT = M*NB
101 1 equemene
      WORK( 1 ) = LWKOPT
102 1 equemene
      LQUERY = ( LWORK.EQ.-1 )
103 1 equemene
      IF( M.LT.0 ) THEN
104 1 equemene
         INFO = -1
105 1 equemene
      ELSE IF( N.LT.0 ) THEN
106 1 equemene
         INFO = -2
107 1 equemene
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
108 1 equemene
         INFO = -4
109 1 equemene
      ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
110 1 equemene
         INFO = -7
111 1 equemene
      END IF
112 1 equemene
      IF( INFO.NE.0 ) THEN
113 1 equemene
         CALL XERBLA( 'DGELQF', -INFO )
114 1 equemene
         RETURN
115 1 equemene
      ELSE IF( LQUERY ) THEN
116 1 equemene
         RETURN
117 1 equemene
      END IF
118 1 equemene
*
119 1 equemene
*     Quick return if possible
120 1 equemene
*
121 1 equemene
      K = MIN( M, N )
122 1 equemene
      IF( K.EQ.0 ) THEN
123 1 equemene
         WORK( 1 ) = 1
124 1 equemene
         RETURN
125 1 equemene
      END IF
126 1 equemene
*
127 1 equemene
      NBMIN = 2
128 1 equemene
      NX = 0
129 1 equemene
      IWS = M
130 1 equemene
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
131 1 equemene
*
132 1 equemene
*        Determine when to cross over from blocked to unblocked code.
133 1 equemene
*
134 1 equemene
         NX = MAX( 0, ILAENV( 3, 'DGELQF', ' ', M, N, -1, -1 ) )
135 1 equemene
         IF( NX.LT.K ) THEN
136 1 equemene
*
137 1 equemene
*           Determine if workspace is large enough for blocked code.
138 1 equemene
*
139 1 equemene
            LDWORK = M
140 1 equemene
            IWS = LDWORK*NB
141 1 equemene
            IF( LWORK.LT.IWS ) THEN
142 1 equemene
*
143 1 equemene
*              Not enough workspace to use optimal NB:  reduce NB and
144 1 equemene
*              determine the minimum value of NB.
145 1 equemene
*
146 1 equemene
               NB = LWORK / LDWORK
147 1 equemene
               NBMIN = MAX( 2, ILAENV( 2, 'DGELQF', ' ', M, N, -1,
148 1 equemene
     $                 -1 ) )
149 1 equemene
            END IF
150 1 equemene
         END IF
151 1 equemene
      END IF
152 1 equemene
*
153 1 equemene
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
154 1 equemene
*
155 1 equemene
*        Use blocked code initially
156 1 equemene
*
157 1 equemene
         DO 10 I = 1, K - NX, NB
158 1 equemene
            IB = MIN( K-I+1, NB )
159 1 equemene
*
160 1 equemene
*           Compute the LQ factorization of the current block
161 1 equemene
*           A(i:i+ib-1,i:n)
162 1 equemene
*
163 1 equemene
            CALL DGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
164 1 equemene
     $                   IINFO )
165 1 equemene
            IF( I+IB.LE.M ) THEN
166 1 equemene
*
167 1 equemene
*              Form the triangular factor of the block reflector
168 1 equemene
*              H = H(i) H(i+1) . . . H(i+ib-1)
169 1 equemene
*
170 1 equemene
               CALL DLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
171 1 equemene
     $                      LDA, TAU( I ), WORK, LDWORK )
172 1 equemene
*
173 1 equemene
*              Apply H to A(i+ib:m,i:n) from the right
174 1 equemene
*
175 1 equemene
               CALL DLARFB( 'Right', 'No transpose', 'Forward',
176 1 equemene
     $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
177 1 equemene
     $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
178 1 equemene
     $                      WORK( IB+1 ), LDWORK )
179 1 equemene
            END IF
180 1 equemene
   10    CONTINUE
181 1 equemene
      ELSE
182 1 equemene
         I = 1
183 1 equemene
      END IF
184 1 equemene
*
185 1 equemene
*     Use unblocked code to factor the last or only block.
186 1 equemene
*
187 1 equemene
      IF( I.LE.K )
188 1 equemene
     $   CALL DGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
189 1 equemene
     $                IINFO )
190 1 equemene
*
191 1 equemene
      WORK( 1 ) = IWS
192 1 equemene
      RETURN
193 1 equemene
*
194 1 equemene
*     End of DGELQF
195 1 equemene
*
196 1 equemene
      END