Statistiques
| Révision :

root / src / blas / strsm.f @ 2

Historique | Voir | Annoter | Télécharger (11,87 ko)

1 1 equemene
      SUBROUTINE STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      REAL ALPHA
4 1 equemene
      INTEGER LDA,LDB,M,N
5 1 equemene
      CHARACTER DIAG,SIDE,TRANSA,UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      REAL A(LDA,*),B(LDB,*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  STRSM  solves one of the matrix equations
15 1 equemene
*
16 1 equemene
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
17 1 equemene
*
18 1 equemene
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
19 1 equemene
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
20 1 equemene
*
21 1 equemene
*     op( A ) = A   or   op( A ) = A'.
22 1 equemene
*
23 1 equemene
*  The matrix X is overwritten on B.
24 1 equemene
*
25 1 equemene
*  Arguments
26 1 equemene
*  ==========
27 1 equemene
*
28 1 equemene
*  SIDE   - CHARACTER*1.
29 1 equemene
*           On entry, SIDE specifies whether op( A ) appears on the left
30 1 equemene
*           or right of X as follows:
31 1 equemene
*
32 1 equemene
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
33 1 equemene
*
34 1 equemene
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
35 1 equemene
*
36 1 equemene
*           Unchanged on exit.
37 1 equemene
*
38 1 equemene
*  UPLO   - CHARACTER*1.
39 1 equemene
*           On entry, UPLO specifies whether the matrix A is an upper or
40 1 equemene
*           lower triangular matrix as follows:
41 1 equemene
*
42 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
43 1 equemene
*
44 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
45 1 equemene
*
46 1 equemene
*           Unchanged on exit.
47 1 equemene
*
48 1 equemene
*  TRANSA - CHARACTER*1.
49 1 equemene
*           On entry, TRANSA specifies the form of op( A ) to be used in
50 1 equemene
*           the matrix multiplication as follows:
51 1 equemene
*
52 1 equemene
*              TRANSA = 'N' or 'n'   op( A ) = A.
53 1 equemene
*
54 1 equemene
*              TRANSA = 'T' or 't'   op( A ) = A'.
55 1 equemene
*
56 1 equemene
*              TRANSA = 'C' or 'c'   op( A ) = A'.
57 1 equemene
*
58 1 equemene
*           Unchanged on exit.
59 1 equemene
*
60 1 equemene
*  DIAG   - CHARACTER*1.
61 1 equemene
*           On entry, DIAG specifies whether or not A is unit triangular
62 1 equemene
*           as follows:
63 1 equemene
*
64 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
65 1 equemene
*
66 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
67 1 equemene
*                                  triangular.
68 1 equemene
*
69 1 equemene
*           Unchanged on exit.
70 1 equemene
*
71 1 equemene
*  M      - INTEGER.
72 1 equemene
*           On entry, M specifies the number of rows of B. M must be at
73 1 equemene
*           least zero.
74 1 equemene
*           Unchanged on exit.
75 1 equemene
*
76 1 equemene
*  N      - INTEGER.
77 1 equemene
*           On entry, N specifies the number of columns of B.  N must be
78 1 equemene
*           at least zero.
79 1 equemene
*           Unchanged on exit.
80 1 equemene
*
81 1 equemene
*  ALPHA  - REAL            .
82 1 equemene
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
83 1 equemene
*           zero then  A is not referenced and  B need not be set before
84 1 equemene
*           entry.
85 1 equemene
*           Unchanged on exit.
86 1 equemene
*
87 1 equemene
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
88 1 equemene
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
89 1 equemene
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
90 1 equemene
*           upper triangular part of the array  A must contain the upper
91 1 equemene
*           triangular matrix  and the strictly lower triangular part of
92 1 equemene
*           A is not referenced.
93 1 equemene
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
94 1 equemene
*           lower triangular part of the array  A must contain the lower
95 1 equemene
*           triangular matrix  and the strictly upper triangular part of
96 1 equemene
*           A is not referenced.
97 1 equemene
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
98 1 equemene
*           A  are not referenced either,  but are assumed to be  unity.
99 1 equemene
*           Unchanged on exit.
100 1 equemene
*
101 1 equemene
*  LDA    - INTEGER.
102 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
103 1 equemene
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
104 1 equemene
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
105 1 equemene
*           then LDA must be at least max( 1, n ).
106 1 equemene
*           Unchanged on exit.
107 1 equemene
*
108 1 equemene
*  B      - REAL             array of DIMENSION ( LDB, n ).
109 1 equemene
*           Before entry,  the leading  m by n part of the array  B must
110 1 equemene
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
111 1 equemene
*           overwritten by the solution matrix  X.
112 1 equemene
*
113 1 equemene
*  LDB    - INTEGER.
114 1 equemene
*           On entry, LDB specifies the first dimension of B as declared
115 1 equemene
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
116 1 equemene
*           max( 1, m ).
117 1 equemene
*           Unchanged on exit.
118 1 equemene
*
119 1 equemene
*
120 1 equemene
*  Level 3 Blas routine.
121 1 equemene
*
122 1 equemene
*
123 1 equemene
*  -- Written on 8-February-1989.
124 1 equemene
*     Jack Dongarra, Argonne National Laboratory.
125 1 equemene
*     Iain Duff, AERE Harwell.
126 1 equemene
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
127 1 equemene
*     Sven Hammarling, Numerical Algorithms Group Ltd.
128 1 equemene
*
129 1 equemene
*
130 1 equemene
*     .. External Functions ..
131 1 equemene
      LOGICAL LSAME
132 1 equemene
      EXTERNAL LSAME
133 1 equemene
*     ..
134 1 equemene
*     .. External Subroutines ..
135 1 equemene
      EXTERNAL XERBLA
136 1 equemene
*     ..
137 1 equemene
*     .. Intrinsic Functions ..
138 1 equemene
      INTRINSIC MAX
139 1 equemene
*     ..
140 1 equemene
*     .. Local Scalars ..
141 1 equemene
      REAL TEMP
142 1 equemene
      INTEGER I,INFO,J,K,NROWA
143 1 equemene
      LOGICAL LSIDE,NOUNIT,UPPER
144 1 equemene
*     ..
145 1 equemene
*     .. Parameters ..
146 1 equemene
      REAL ONE,ZERO
147 1 equemene
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
148 1 equemene
*     ..
149 1 equemene
*
150 1 equemene
*     Test the input parameters.
151 1 equemene
*
152 1 equemene
      LSIDE = LSAME(SIDE,'L')
153 1 equemene
      IF (LSIDE) THEN
154 1 equemene
          NROWA = M
155 1 equemene
      ELSE
156 1 equemene
          NROWA = N
157 1 equemene
      END IF
158 1 equemene
      NOUNIT = LSAME(DIAG,'N')
159 1 equemene
      UPPER = LSAME(UPLO,'U')
160 1 equemene
*
161 1 equemene
      INFO = 0
162 1 equemene
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
163 1 equemene
          INFO = 1
164 1 equemene
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
165 1 equemene
          INFO = 2
166 1 equemene
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
167 1 equemene
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
168 1 equemene
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
169 1 equemene
          INFO = 3
170 1 equemene
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
171 1 equemene
          INFO = 4
172 1 equemene
      ELSE IF (M.LT.0) THEN
173 1 equemene
          INFO = 5
174 1 equemene
      ELSE IF (N.LT.0) THEN
175 1 equemene
          INFO = 6
176 1 equemene
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
177 1 equemene
          INFO = 9
178 1 equemene
      ELSE IF (LDB.LT.MAX(1,M)) THEN
179 1 equemene
          INFO = 11
180 1 equemene
      END IF
181 1 equemene
      IF (INFO.NE.0) THEN
182 1 equemene
          CALL XERBLA('STRSM ',INFO)
183 1 equemene
          RETURN
184 1 equemene
      END IF
185 1 equemene
*
186 1 equemene
*     Quick return if possible.
187 1 equemene
*
188 1 equemene
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
189 1 equemene
*
190 1 equemene
*     And when  alpha.eq.zero.
191 1 equemene
*
192 1 equemene
      IF (ALPHA.EQ.ZERO) THEN
193 1 equemene
          DO 20 J = 1,N
194 1 equemene
              DO 10 I = 1,M
195 1 equemene
                  B(I,J) = ZERO
196 1 equemene
   10         CONTINUE
197 1 equemene
   20     CONTINUE
198 1 equemene
          RETURN
199 1 equemene
      END IF
200 1 equemene
*
201 1 equemene
*     Start the operations.
202 1 equemene
*
203 1 equemene
      IF (LSIDE) THEN
204 1 equemene
          IF (LSAME(TRANSA,'N')) THEN
205 1 equemene
*
206 1 equemene
*           Form  B := alpha*inv( A )*B.
207 1 equemene
*
208 1 equemene
              IF (UPPER) THEN
209 1 equemene
                  DO 60 J = 1,N
210 1 equemene
                      IF (ALPHA.NE.ONE) THEN
211 1 equemene
                          DO 30 I = 1,M
212 1 equemene
                              B(I,J) = ALPHA*B(I,J)
213 1 equemene
   30                     CONTINUE
214 1 equemene
                      END IF
215 1 equemene
                      DO 50 K = M,1,-1
216 1 equemene
                          IF (B(K,J).NE.ZERO) THEN
217 1 equemene
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
218 1 equemene
                              DO 40 I = 1,K - 1
219 1 equemene
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
220 1 equemene
   40                         CONTINUE
221 1 equemene
                          END IF
222 1 equemene
   50                 CONTINUE
223 1 equemene
   60             CONTINUE
224 1 equemene
              ELSE
225 1 equemene
                  DO 100 J = 1,N
226 1 equemene
                      IF (ALPHA.NE.ONE) THEN
227 1 equemene
                          DO 70 I = 1,M
228 1 equemene
                              B(I,J) = ALPHA*B(I,J)
229 1 equemene
   70                     CONTINUE
230 1 equemene
                      END IF
231 1 equemene
                      DO 90 K = 1,M
232 1 equemene
                          IF (B(K,J).NE.ZERO) THEN
233 1 equemene
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
234 1 equemene
                              DO 80 I = K + 1,M
235 1 equemene
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
236 1 equemene
   80                         CONTINUE
237 1 equemene
                          END IF
238 1 equemene
   90                 CONTINUE
239 1 equemene
  100             CONTINUE
240 1 equemene
              END IF
241 1 equemene
          ELSE
242 1 equemene
*
243 1 equemene
*           Form  B := alpha*inv( A' )*B.
244 1 equemene
*
245 1 equemene
              IF (UPPER) THEN
246 1 equemene
                  DO 130 J = 1,N
247 1 equemene
                      DO 120 I = 1,M
248 1 equemene
                          TEMP = ALPHA*B(I,J)
249 1 equemene
                          DO 110 K = 1,I - 1
250 1 equemene
                              TEMP = TEMP - A(K,I)*B(K,J)
251 1 equemene
  110                     CONTINUE
252 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(I,I)
253 1 equemene
                          B(I,J) = TEMP
254 1 equemene
  120                 CONTINUE
255 1 equemene
  130             CONTINUE
256 1 equemene
              ELSE
257 1 equemene
                  DO 160 J = 1,N
258 1 equemene
                      DO 150 I = M,1,-1
259 1 equemene
                          TEMP = ALPHA*B(I,J)
260 1 equemene
                          DO 140 K = I + 1,M
261 1 equemene
                              TEMP = TEMP - A(K,I)*B(K,J)
262 1 equemene
  140                     CONTINUE
263 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(I,I)
264 1 equemene
                          B(I,J) = TEMP
265 1 equemene
  150                 CONTINUE
266 1 equemene
  160             CONTINUE
267 1 equemene
              END IF
268 1 equemene
          END IF
269 1 equemene
      ELSE
270 1 equemene
          IF (LSAME(TRANSA,'N')) THEN
271 1 equemene
*
272 1 equemene
*           Form  B := alpha*B*inv( A ).
273 1 equemene
*
274 1 equemene
              IF (UPPER) THEN
275 1 equemene
                  DO 210 J = 1,N
276 1 equemene
                      IF (ALPHA.NE.ONE) THEN
277 1 equemene
                          DO 170 I = 1,M
278 1 equemene
                              B(I,J) = ALPHA*B(I,J)
279 1 equemene
  170                     CONTINUE
280 1 equemene
                      END IF
281 1 equemene
                      DO 190 K = 1,J - 1
282 1 equemene
                          IF (A(K,J).NE.ZERO) THEN
283 1 equemene
                              DO 180 I = 1,M
284 1 equemene
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
285 1 equemene
  180                         CONTINUE
286 1 equemene
                          END IF
287 1 equemene
  190                 CONTINUE
288 1 equemene
                      IF (NOUNIT) THEN
289 1 equemene
                          TEMP = ONE/A(J,J)
290 1 equemene
                          DO 200 I = 1,M
291 1 equemene
                              B(I,J) = TEMP*B(I,J)
292 1 equemene
  200                     CONTINUE
293 1 equemene
                      END IF
294 1 equemene
  210             CONTINUE
295 1 equemene
              ELSE
296 1 equemene
                  DO 260 J = N,1,-1
297 1 equemene
                      IF (ALPHA.NE.ONE) THEN
298 1 equemene
                          DO 220 I = 1,M
299 1 equemene
                              B(I,J) = ALPHA*B(I,J)
300 1 equemene
  220                     CONTINUE
301 1 equemene
                      END IF
302 1 equemene
                      DO 240 K = J + 1,N
303 1 equemene
                          IF (A(K,J).NE.ZERO) THEN
304 1 equemene
                              DO 230 I = 1,M
305 1 equemene
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
306 1 equemene
  230                         CONTINUE
307 1 equemene
                          END IF
308 1 equemene
  240                 CONTINUE
309 1 equemene
                      IF (NOUNIT) THEN
310 1 equemene
                          TEMP = ONE/A(J,J)
311 1 equemene
                          DO 250 I = 1,M
312 1 equemene
                              B(I,J) = TEMP*B(I,J)
313 1 equemene
  250                     CONTINUE
314 1 equemene
                      END IF
315 1 equemene
  260             CONTINUE
316 1 equemene
              END IF
317 1 equemene
          ELSE
318 1 equemene
*
319 1 equemene
*           Form  B := alpha*B*inv( A' ).
320 1 equemene
*
321 1 equemene
              IF (UPPER) THEN
322 1 equemene
                  DO 310 K = N,1,-1
323 1 equemene
                      IF (NOUNIT) THEN
324 1 equemene
                          TEMP = ONE/A(K,K)
325 1 equemene
                          DO 270 I = 1,M
326 1 equemene
                              B(I,K) = TEMP*B(I,K)
327 1 equemene
  270                     CONTINUE
328 1 equemene
                      END IF
329 1 equemene
                      DO 290 J = 1,K - 1
330 1 equemene
                          IF (A(J,K).NE.ZERO) THEN
331 1 equemene
                              TEMP = A(J,K)
332 1 equemene
                              DO 280 I = 1,M
333 1 equemene
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
334 1 equemene
  280                         CONTINUE
335 1 equemene
                          END IF
336 1 equemene
  290                 CONTINUE
337 1 equemene
                      IF (ALPHA.NE.ONE) THEN
338 1 equemene
                          DO 300 I = 1,M
339 1 equemene
                              B(I,K) = ALPHA*B(I,K)
340 1 equemene
  300                     CONTINUE
341 1 equemene
                      END IF
342 1 equemene
  310             CONTINUE
343 1 equemene
              ELSE
344 1 equemene
                  DO 360 K = 1,N
345 1 equemene
                      IF (NOUNIT) THEN
346 1 equemene
                          TEMP = ONE/A(K,K)
347 1 equemene
                          DO 320 I = 1,M
348 1 equemene
                              B(I,K) = TEMP*B(I,K)
349 1 equemene
  320                     CONTINUE
350 1 equemene
                      END IF
351 1 equemene
                      DO 340 J = K + 1,N
352 1 equemene
                          IF (A(J,K).NE.ZERO) THEN
353 1 equemene
                              TEMP = A(J,K)
354 1 equemene
                              DO 330 I = 1,M
355 1 equemene
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
356 1 equemene
  330                         CONTINUE
357 1 equemene
                          END IF
358 1 equemene
  340                 CONTINUE
359 1 equemene
                      IF (ALPHA.NE.ONE) THEN
360 1 equemene
                          DO 350 I = 1,M
361 1 equemene
                              B(I,K) = ALPHA*B(I,K)
362 1 equemene
  350                     CONTINUE
363 1 equemene
                      END IF
364 1 equemene
  360             CONTINUE
365 1 equemene
              END IF
366 1 equemene
          END IF
367 1 equemene
      END IF
368 1 equemene
*
369 1 equemene
      RETURN
370 1 equemene
*
371 1 equemene
*     End of STRSM .
372 1 equemene
*
373 1 equemene
      END