Statistiques
| Révision :

root / src / blas / dspr.f @ 2

Historique | Voir | Annoter | Télécharger (5,78 ko)

1 1 equemene
      SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      DOUBLE PRECISION ALPHA
4 1 equemene
      INTEGER INCX,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      DOUBLE PRECISION AP(*),X(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  DSPR    performs the symmetric rank 1 operation
15 1 equemene
*
16 1 equemene
*     A := alpha*x*x' + A,
17 1 equemene
*
18 1 equemene
*  where alpha is a real scalar, x is an n element vector and A is an
19 1 equemene
*  n by n symmetric matrix, supplied in packed form.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the matrix A is supplied in the packed
27 1 equemene
*           array AP as follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  supplied in AP.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  supplied in AP.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - DOUBLE PRECISION.
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  X      - DOUBLE PRECISION array of dimension at least
47 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 equemene
*           Before entry, the incremented array X must contain the n
49 1 equemene
*           element vector x.
50 1 equemene
*           Unchanged on exit.
51 1 equemene
*
52 1 equemene
*  INCX   - INTEGER.
53 1 equemene
*           On entry, INCX specifies the increment for the elements of
54 1 equemene
*           X. INCX must not be zero.
55 1 equemene
*           Unchanged on exit.
56 1 equemene
*
57 1 equemene
*  AP     - DOUBLE PRECISION array of DIMENSION at least
58 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
59 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the array AP must
60 1 equemene
*           contain the upper triangular part of the symmetric matrix
61 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
62 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
63 1 equemene
*           and a( 2, 2 ) respectively, and so on. On exit, the array
64 1 equemene
*           AP is overwritten by the upper triangular part of the
65 1 equemene
*           updated matrix.
66 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
67 1 equemene
*           contain the lower triangular part of the symmetric matrix
68 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
69 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
70 1 equemene
*           and a( 3, 1 ) respectively, and so on. On exit, the array
71 1 equemene
*           AP is overwritten by the lower triangular part of the
72 1 equemene
*           updated matrix.
73 1 equemene
*
74 1 equemene
*
75 1 equemene
*  Level 2 Blas routine.
76 1 equemene
*
77 1 equemene
*  -- Written on 22-October-1986.
78 1 equemene
*     Jack Dongarra, Argonne National Lab.
79 1 equemene
*     Jeremy Du Croz, Nag Central Office.
80 1 equemene
*     Sven Hammarling, Nag Central Office.
81 1 equemene
*     Richard Hanson, Sandia National Labs.
82 1 equemene
*
83 1 equemene
*
84 1 equemene
*     .. Parameters ..
85 1 equemene
      DOUBLE PRECISION ZERO
86 1 equemene
      PARAMETER (ZERO=0.0D+0)
87 1 equemene
*     ..
88 1 equemene
*     .. Local Scalars ..
89 1 equemene
      DOUBLE PRECISION TEMP
90 1 equemene
      INTEGER I,INFO,IX,J,JX,K,KK,KX
91 1 equemene
*     ..
92 1 equemene
*     .. External Functions ..
93 1 equemene
      LOGICAL LSAME
94 1 equemene
      EXTERNAL LSAME
95 1 equemene
*     ..
96 1 equemene
*     .. External Subroutines ..
97 1 equemene
      EXTERNAL XERBLA
98 1 equemene
*     ..
99 1 equemene
*
100 1 equemene
*     Test the input parameters.
101 1 equemene
*
102 1 equemene
      INFO = 0
103 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
104 1 equemene
          INFO = 1
105 1 equemene
      ELSE IF (N.LT.0) THEN
106 1 equemene
          INFO = 2
107 1 equemene
      ELSE IF (INCX.EQ.0) THEN
108 1 equemene
          INFO = 5
109 1 equemene
      END IF
110 1 equemene
      IF (INFO.NE.0) THEN
111 1 equemene
          CALL XERBLA('DSPR  ',INFO)
112 1 equemene
          RETURN
113 1 equemene
      END IF
114 1 equemene
*
115 1 equemene
*     Quick return if possible.
116 1 equemene
*
117 1 equemene
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
118 1 equemene
*
119 1 equemene
*     Set the start point in X if the increment is not unity.
120 1 equemene
*
121 1 equemene
      IF (INCX.LE.0) THEN
122 1 equemene
          KX = 1 - (N-1)*INCX
123 1 equemene
      ELSE IF (INCX.NE.1) THEN
124 1 equemene
          KX = 1
125 1 equemene
      END IF
126 1 equemene
*
127 1 equemene
*     Start the operations. In this version the elements of the array AP
128 1 equemene
*     are accessed sequentially with one pass through AP.
129 1 equemene
*
130 1 equemene
      KK = 1
131 1 equemene
      IF (LSAME(UPLO,'U')) THEN
132 1 equemene
*
133 1 equemene
*        Form  A  when upper triangle is stored in AP.
134 1 equemene
*
135 1 equemene
          IF (INCX.EQ.1) THEN
136 1 equemene
              DO 20 J = 1,N
137 1 equemene
                  IF (X(J).NE.ZERO) THEN
138 1 equemene
                      TEMP = ALPHA*X(J)
139 1 equemene
                      K = KK
140 1 equemene
                      DO 10 I = 1,J
141 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP
142 1 equemene
                          K = K + 1
143 1 equemene
   10                 CONTINUE
144 1 equemene
                  END IF
145 1 equemene
                  KK = KK + J
146 1 equemene
   20         CONTINUE
147 1 equemene
          ELSE
148 1 equemene
              JX = KX
149 1 equemene
              DO 40 J = 1,N
150 1 equemene
                  IF (X(JX).NE.ZERO) THEN
151 1 equemene
                      TEMP = ALPHA*X(JX)
152 1 equemene
                      IX = KX
153 1 equemene
                      DO 30 K = KK,KK + J - 1
154 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP
155 1 equemene
                          IX = IX + INCX
156 1 equemene
   30                 CONTINUE
157 1 equemene
                  END IF
158 1 equemene
                  JX = JX + INCX
159 1 equemene
                  KK = KK + J
160 1 equemene
   40         CONTINUE
161 1 equemene
          END IF
162 1 equemene
      ELSE
163 1 equemene
*
164 1 equemene
*        Form  A  when lower triangle is stored in AP.
165 1 equemene
*
166 1 equemene
          IF (INCX.EQ.1) THEN
167 1 equemene
              DO 60 J = 1,N
168 1 equemene
                  IF (X(J).NE.ZERO) THEN
169 1 equemene
                      TEMP = ALPHA*X(J)
170 1 equemene
                      K = KK
171 1 equemene
                      DO 50 I = J,N
172 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP
173 1 equemene
                          K = K + 1
174 1 equemene
   50                 CONTINUE
175 1 equemene
                  END IF
176 1 equemene
                  KK = KK + N - J + 1
177 1 equemene
   60         CONTINUE
178 1 equemene
          ELSE
179 1 equemene
              JX = KX
180 1 equemene
              DO 80 J = 1,N
181 1 equemene
                  IF (X(JX).NE.ZERO) THEN
182 1 equemene
                      TEMP = ALPHA*X(JX)
183 1 equemene
                      IX = JX
184 1 equemene
                      DO 70 K = KK,KK + N - J
185 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP
186 1 equemene
                          IX = IX + INCX
187 1 equemene
   70                 CONTINUE
188 1 equemene
                  END IF
189 1 equemene
                  JX = JX + INCX
190 1 equemene
                  KK = KK + N - J + 1
191 1 equemene
   80         CONTINUE
192 1 equemene
          END IF
193 1 equemene
      END IF
194 1 equemene
*
195 1 equemene
      RETURN
196 1 equemene
*
197 1 equemene
*     End of DSPR  .
198 1 equemene
*
199 1 equemene
      END