Statistiques
| Révision :

root / src / blas / ctbsv.f @ 2

Historique | Voir | Annoter | Télécharger (12,39 ko)

1 1 equemene
      SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,K,LDA,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      COMPLEX A(LDA,*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  CTBSV  solves one of the systems of equations
14 1 equemene
*
15 1 equemene
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
16 1 equemene
*
17 1 equemene
*  where b and x are n element vectors and A is an n by n unit, or
18 1 equemene
*  non-unit, upper or lower triangular band matrix, with ( k + 1 )
19 1 equemene
*  diagonals.
20 1 equemene
*
21 1 equemene
*  No test for singularity or near-singularity is included in this
22 1 equemene
*  routine. Such tests must be performed before calling this routine.
23 1 equemene
*
24 1 equemene
*  Arguments
25 1 equemene
*  ==========
26 1 equemene
*
27 1 equemene
*  UPLO   - CHARACTER*1.
28 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
29 1 equemene
*           lower triangular matrix as follows:
30 1 equemene
*
31 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
32 1 equemene
*
33 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  TRANS  - CHARACTER*1.
38 1 equemene
*           On entry, TRANS specifies the equations to be solved as
39 1 equemene
*           follows:
40 1 equemene
*
41 1 equemene
*              TRANS = 'N' or 'n'   A*x = b.
42 1 equemene
*
43 1 equemene
*              TRANS = 'T' or 't'   A'*x = b.
44 1 equemene
*
45 1 equemene
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
46 1 equemene
*
47 1 equemene
*           Unchanged on exit.
48 1 equemene
*
49 1 equemene
*  DIAG   - CHARACTER*1.
50 1 equemene
*           On entry, DIAG specifies whether or not A is unit
51 1 equemene
*           triangular as follows:
52 1 equemene
*
53 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
54 1 equemene
*
55 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
56 1 equemene
*                                  triangular.
57 1 equemene
*
58 1 equemene
*           Unchanged on exit.
59 1 equemene
*
60 1 equemene
*  N      - INTEGER.
61 1 equemene
*           On entry, N specifies the order of the matrix A.
62 1 equemene
*           N must be at least zero.
63 1 equemene
*           Unchanged on exit.
64 1 equemene
*
65 1 equemene
*  K      - INTEGER.
66 1 equemene
*           On entry with UPLO = 'U' or 'u', K specifies the number of
67 1 equemene
*           super-diagonals of the matrix A.
68 1 equemene
*           On entry with UPLO = 'L' or 'l', K specifies the number of
69 1 equemene
*           sub-diagonals of the matrix A.
70 1 equemene
*           K must satisfy  0 .le. K.
71 1 equemene
*           Unchanged on exit.
72 1 equemene
*
73 1 equemene
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
74 1 equemene
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
75 1 equemene
*           by n part of the array A must contain the upper triangular
76 1 equemene
*           band part of the matrix of coefficients, supplied column by
77 1 equemene
*           column, with the leading diagonal of the matrix in row
78 1 equemene
*           ( k + 1 ) of the array, the first super-diagonal starting at
79 1 equemene
*           position 2 in row k, and so on. The top left k by k triangle
80 1 equemene
*           of the array A is not referenced.
81 1 equemene
*           The following program segment will transfer an upper
82 1 equemene
*           triangular band matrix from conventional full matrix storage
83 1 equemene
*           to band storage:
84 1 equemene
*
85 1 equemene
*                 DO 20, J = 1, N
86 1 equemene
*                    M = K + 1 - J
87 1 equemene
*                    DO 10, I = MAX( 1, J - K ), J
88 1 equemene
*                       A( M + I, J ) = matrix( I, J )
89 1 equemene
*              10    CONTINUE
90 1 equemene
*              20 CONTINUE
91 1 equemene
*
92 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
93 1 equemene
*           by n part of the array A must contain the lower triangular
94 1 equemene
*           band part of the matrix of coefficients, supplied column by
95 1 equemene
*           column, with the leading diagonal of the matrix in row 1 of
96 1 equemene
*           the array, the first sub-diagonal starting at position 1 in
97 1 equemene
*           row 2, and so on. The bottom right k by k triangle of the
98 1 equemene
*           array A is not referenced.
99 1 equemene
*           The following program segment will transfer a lower
100 1 equemene
*           triangular band matrix from conventional full matrix storage
101 1 equemene
*           to band storage:
102 1 equemene
*
103 1 equemene
*                 DO 20, J = 1, N
104 1 equemene
*                    M = 1 - J
105 1 equemene
*                    DO 10, I = J, MIN( N, J + K )
106 1 equemene
*                       A( M + I, J ) = matrix( I, J )
107 1 equemene
*              10    CONTINUE
108 1 equemene
*              20 CONTINUE
109 1 equemene
*
110 1 equemene
*           Note that when DIAG = 'U' or 'u' the elements of the array A
111 1 equemene
*           corresponding to the diagonal elements of the matrix are not
112 1 equemene
*           referenced, but are assumed to be unity.
113 1 equemene
*           Unchanged on exit.
114 1 equemene
*
115 1 equemene
*  LDA    - INTEGER.
116 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
117 1 equemene
*           in the calling (sub) program. LDA must be at least
118 1 equemene
*           ( k + 1 ).
119 1 equemene
*           Unchanged on exit.
120 1 equemene
*
121 1 equemene
*  X      - COMPLEX          array of dimension at least
122 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
123 1 equemene
*           Before entry, the incremented array X must contain the n
124 1 equemene
*           element right-hand side vector b. On exit, X is overwritten
125 1 equemene
*           with the solution vector x.
126 1 equemene
*
127 1 equemene
*  INCX   - INTEGER.
128 1 equemene
*           On entry, INCX specifies the increment for the elements of
129 1 equemene
*           X. INCX must not be zero.
130 1 equemene
*           Unchanged on exit.
131 1 equemene
*
132 1 equemene
*
133 1 equemene
*  Level 2 Blas routine.
134 1 equemene
*
135 1 equemene
*  -- Written on 22-October-1986.
136 1 equemene
*     Jack Dongarra, Argonne National Lab.
137 1 equemene
*     Jeremy Du Croz, Nag Central Office.
138 1 equemene
*     Sven Hammarling, Nag Central Office.
139 1 equemene
*     Richard Hanson, Sandia National Labs.
140 1 equemene
*
141 1 equemene
*
142 1 equemene
*     .. Parameters ..
143 1 equemene
      COMPLEX ZERO
144 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
145 1 equemene
*     ..
146 1 equemene
*     .. Local Scalars ..
147 1 equemene
      COMPLEX TEMP
148 1 equemene
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
149 1 equemene
      LOGICAL NOCONJ,NOUNIT
150 1 equemene
*     ..
151 1 equemene
*     .. External Functions ..
152 1 equemene
      LOGICAL LSAME
153 1 equemene
      EXTERNAL LSAME
154 1 equemene
*     ..
155 1 equemene
*     .. External Subroutines ..
156 1 equemene
      EXTERNAL XERBLA
157 1 equemene
*     ..
158 1 equemene
*     .. Intrinsic Functions ..
159 1 equemene
      INTRINSIC CONJG,MAX,MIN
160 1 equemene
*     ..
161 1 equemene
*
162 1 equemene
*     Test the input parameters.
163 1 equemene
*
164 1 equemene
      INFO = 0
165 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
166 1 equemene
          INFO = 1
167 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
168 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
169 1 equemene
          INFO = 2
170 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
171 1 equemene
          INFO = 3
172 1 equemene
      ELSE IF (N.LT.0) THEN
173 1 equemene
          INFO = 4
174 1 equemene
      ELSE IF (K.LT.0) THEN
175 1 equemene
          INFO = 5
176 1 equemene
      ELSE IF (LDA.LT. (K+1)) THEN
177 1 equemene
          INFO = 7
178 1 equemene
      ELSE IF (INCX.EQ.0) THEN
179 1 equemene
          INFO = 9
180 1 equemene
      END IF
181 1 equemene
      IF (INFO.NE.0) THEN
182 1 equemene
          CALL XERBLA('CTBSV ',INFO)
183 1 equemene
          RETURN
184 1 equemene
      END IF
185 1 equemene
*
186 1 equemene
*     Quick return if possible.
187 1 equemene
*
188 1 equemene
      IF (N.EQ.0) RETURN
189 1 equemene
*
190 1 equemene
      NOCONJ = LSAME(TRANS,'T')
191 1 equemene
      NOUNIT = LSAME(DIAG,'N')
192 1 equemene
*
193 1 equemene
*     Set up the start point in X if the increment is not unity. This
194 1 equemene
*     will be  ( N - 1 )*INCX  too small for descending loops.
195 1 equemene
*
196 1 equemene
      IF (INCX.LE.0) THEN
197 1 equemene
          KX = 1 - (N-1)*INCX
198 1 equemene
      ELSE IF (INCX.NE.1) THEN
199 1 equemene
          KX = 1
200 1 equemene
      END IF
201 1 equemene
*
202 1 equemene
*     Start the operations. In this version the elements of A are
203 1 equemene
*     accessed by sequentially with one pass through A.
204 1 equemene
*
205 1 equemene
      IF (LSAME(TRANS,'N')) THEN
206 1 equemene
*
207 1 equemene
*        Form  x := inv( A )*x.
208 1 equemene
*
209 1 equemene
          IF (LSAME(UPLO,'U')) THEN
210 1 equemene
              KPLUS1 = K + 1
211 1 equemene
              IF (INCX.EQ.1) THEN
212 1 equemene
                  DO 20 J = N,1,-1
213 1 equemene
                      IF (X(J).NE.ZERO) THEN
214 1 equemene
                          L = KPLUS1 - J
215 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
216 1 equemene
                          TEMP = X(J)
217 1 equemene
                          DO 10 I = J - 1,MAX(1,J-K),-1
218 1 equemene
                              X(I) = X(I) - TEMP*A(L+I,J)
219 1 equemene
   10                     CONTINUE
220 1 equemene
                      END IF
221 1 equemene
   20             CONTINUE
222 1 equemene
              ELSE
223 1 equemene
                  KX = KX + (N-1)*INCX
224 1 equemene
                  JX = KX
225 1 equemene
                  DO 40 J = N,1,-1
226 1 equemene
                      KX = KX - INCX
227 1 equemene
                      IF (X(JX).NE.ZERO) THEN
228 1 equemene
                          IX = KX
229 1 equemene
                          L = KPLUS1 - J
230 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
231 1 equemene
                          TEMP = X(JX)
232 1 equemene
                          DO 30 I = J - 1,MAX(1,J-K),-1
233 1 equemene
                              X(IX) = X(IX) - TEMP*A(L+I,J)
234 1 equemene
                              IX = IX - INCX
235 1 equemene
   30                     CONTINUE
236 1 equemene
                      END IF
237 1 equemene
                      JX = JX - INCX
238 1 equemene
   40             CONTINUE
239 1 equemene
              END IF
240 1 equemene
          ELSE
241 1 equemene
              IF (INCX.EQ.1) THEN
242 1 equemene
                  DO 60 J = 1,N
243 1 equemene
                      IF (X(J).NE.ZERO) THEN
244 1 equemene
                          L = 1 - J
245 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(1,J)
246 1 equemene
                          TEMP = X(J)
247 1 equemene
                          DO 50 I = J + 1,MIN(N,J+K)
248 1 equemene
                              X(I) = X(I) - TEMP*A(L+I,J)
249 1 equemene
   50                     CONTINUE
250 1 equemene
                      END IF
251 1 equemene
   60             CONTINUE
252 1 equemene
              ELSE
253 1 equemene
                  JX = KX
254 1 equemene
                  DO 80 J = 1,N
255 1 equemene
                      KX = KX + INCX
256 1 equemene
                      IF (X(JX).NE.ZERO) THEN
257 1 equemene
                          IX = KX
258 1 equemene
                          L = 1 - J
259 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(1,J)
260 1 equemene
                          TEMP = X(JX)
261 1 equemene
                          DO 70 I = J + 1,MIN(N,J+K)
262 1 equemene
                              X(IX) = X(IX) - TEMP*A(L+I,J)
263 1 equemene
                              IX = IX + INCX
264 1 equemene
   70                     CONTINUE
265 1 equemene
                      END IF
266 1 equemene
                      JX = JX + INCX
267 1 equemene
   80             CONTINUE
268 1 equemene
              END IF
269 1 equemene
          END IF
270 1 equemene
      ELSE
271 1 equemene
*
272 1 equemene
*        Form  x := inv( A' )*x  or  x := inv( conjg( A') )*x.
273 1 equemene
*
274 1 equemene
          IF (LSAME(UPLO,'U')) THEN
275 1 equemene
              KPLUS1 = K + 1
276 1 equemene
              IF (INCX.EQ.1) THEN
277 1 equemene
                  DO 110 J = 1,N
278 1 equemene
                      TEMP = X(J)
279 1 equemene
                      L = KPLUS1 - J
280 1 equemene
                      IF (NOCONJ) THEN
281 1 equemene
                          DO 90 I = MAX(1,J-K),J - 1
282 1 equemene
                              TEMP = TEMP - A(L+I,J)*X(I)
283 1 equemene
   90                     CONTINUE
284 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
285 1 equemene
                      ELSE
286 1 equemene
                          DO 100 I = MAX(1,J-K),J - 1
287 1 equemene
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
288 1 equemene
  100                     CONTINUE
289 1 equemene
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
290 1 equemene
                      END IF
291 1 equemene
                      X(J) = TEMP
292 1 equemene
  110             CONTINUE
293 1 equemene
              ELSE
294 1 equemene
                  JX = KX
295 1 equemene
                  DO 140 J = 1,N
296 1 equemene
                      TEMP = X(JX)
297 1 equemene
                      IX = KX
298 1 equemene
                      L = KPLUS1 - J
299 1 equemene
                      IF (NOCONJ) THEN
300 1 equemene
                          DO 120 I = MAX(1,J-K),J - 1
301 1 equemene
                              TEMP = TEMP - A(L+I,J)*X(IX)
302 1 equemene
                              IX = IX + INCX
303 1 equemene
  120                     CONTINUE
304 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
305 1 equemene
                      ELSE
306 1 equemene
                          DO 130 I = MAX(1,J-K),J - 1
307 1 equemene
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
308 1 equemene
                              IX = IX + INCX
309 1 equemene
  130                     CONTINUE
310 1 equemene
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
311 1 equemene
                      END IF
312 1 equemene
                      X(JX) = TEMP
313 1 equemene
                      JX = JX + INCX
314 1 equemene
                      IF (J.GT.K) KX = KX + INCX
315 1 equemene
  140             CONTINUE
316 1 equemene
              END IF
317 1 equemene
          ELSE
318 1 equemene
              IF (INCX.EQ.1) THEN
319 1 equemene
                  DO 170 J = N,1,-1
320 1 equemene
                      TEMP = X(J)
321 1 equemene
                      L = 1 - J
322 1 equemene
                      IF (NOCONJ) THEN
323 1 equemene
                          DO 150 I = MIN(N,J+K),J + 1,-1
324 1 equemene
                              TEMP = TEMP - A(L+I,J)*X(I)
325 1 equemene
  150                     CONTINUE
326 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
327 1 equemene
                      ELSE
328 1 equemene
                          DO 160 I = MIN(N,J+K),J + 1,-1
329 1 equemene
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
330 1 equemene
  160                     CONTINUE
331 1 equemene
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
332 1 equemene
                      END IF
333 1 equemene
                      X(J) = TEMP
334 1 equemene
  170             CONTINUE
335 1 equemene
              ELSE
336 1 equemene
                  KX = KX + (N-1)*INCX
337 1 equemene
                  JX = KX
338 1 equemene
                  DO 200 J = N,1,-1
339 1 equemene
                      TEMP = X(JX)
340 1 equemene
                      IX = KX
341 1 equemene
                      L = 1 - J
342 1 equemene
                      IF (NOCONJ) THEN
343 1 equemene
                          DO 180 I = MIN(N,J+K),J + 1,-1
344 1 equemene
                              TEMP = TEMP - A(L+I,J)*X(IX)
345 1 equemene
                              IX = IX - INCX
346 1 equemene
  180                     CONTINUE
347 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
348 1 equemene
                      ELSE
349 1 equemene
                          DO 190 I = MIN(N,J+K),J + 1,-1
350 1 equemene
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
351 1 equemene
                              IX = IX - INCX
352 1 equemene
  190                     CONTINUE
353 1 equemene
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
354 1 equemene
                      END IF
355 1 equemene
                      X(JX) = TEMP
356 1 equemene
                      JX = JX - INCX
357 1 equemene
                      IF ((N-J).GE.K) KX = KX - INCX
358 1 equemene
  200             CONTINUE
359 1 equemene
              END IF
360 1 equemene
          END IF
361 1 equemene
      END IF
362 1 equemene
*
363 1 equemene
      RETURN
364 1 equemene
*
365 1 equemene
*     End of CTBSV .
366 1 equemene
*
367 1 equemene
      END