root / src / Step_GEDIIS_All.f90 @ 2
Historique | Voir | Annoter | Télécharger (21,02 ko)
1 | 1 | equemene | ! Geom = input parameter vector (Geometry), Grad = input gradient vector, HEAT is Energy(Geom) |
---|---|---|---|
2 | 1 | equemene | SUBROUTINE Step_GEDIIS_All(NGeomF,IGeom,Step,Geom,Grad,HEAT,Hess,NCoord,allocation_flag,Tangent) |
3 | 1 | equemene | !SUBROUTINE Step_GEDIIS(Geom_new,Geom,Grad,HEAT,Hess,NCoord,FRST) |
4 | 1 | equemene | use Io_module |
5 | 1 | equemene | use Path_module, only : Nom, Atome, OrderInv, indzmat, Pi, Nat, Vfree |
6 | 1 | equemene | IMPLICIT NONE |
7 | 1 | equemene | |
8 | 1 | equemene | INTEGER(KINT) :: NGeomF,IGeom |
9 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: NCoord |
10 | 1 | equemene | REAL(KREAL) :: Geom(NCoord), Grad(NCoord), Hess(NCoord*NCoord), Step(NCoord), Geom_new(NCoord) |
11 | 1 | equemene | REAL(KREAL) :: HEAT ! HEAT= Energy |
12 | 1 | equemene | LOGICAL :: allocation_flag |
13 | 1 | equemene | REAL(KREAL), INTENT(INOUT) :: Tangent(Ncoord) |
14 | 1 | equemene | |
15 | 1 | equemene | ! MRESET = maximum number of iterations. |
16 | 1 | equemene | INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
17 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:,:), GradSet(:,:) ! NGeomF,MRESET*NCoord |
18 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: GSAVE(:,:) !NGeomF,NCoord |
19 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: ESET(:,:) |
20 | 1 | equemene | REAL(KREAL) :: ESET_tmp(MRESET), B(M2), BS(M2), BST(M2), B_tmp(M2) ! M2=256 |
21 | 1 | equemene | LOGICAL :: DEBUG, PRINT, ci_lt_zero |
22 | 1 | equemene | INTEGER(KINT), ALLOCATABLE, SAVE :: MSET(:) ! mth Iteration |
23 | 1 | equemene | LOGICAL, ALLOCATABLE, SAVE :: FRST(:) |
24 | 1 | equemene | REAL(KREAL) :: ci(MRESET), ci_tmp(MRESET) ! MRESET = maximum number of iterations. |
25 | 1 | equemene | INTEGER(KINT) :: NGEDIIS, MPLUS, INV, ITERA, MM, cis_zero, IXX, JXX, MSET_minus_cis_zero |
26 | 1 | equemene | INTEGER(KINT) :: I,J,K, JJ, KJ, JNV, II, IONE, IJ, INK,ITmp, IX, JX, KX, MSET_C_cis_zero |
27 | 1 | equemene | INTEGER(KINT) :: current_size_B_mat, MyPointer, Iat, Isch, NFree, Idx |
28 | 1 | equemene | REAL(KREAL) :: XMax, XNorm, S, DET, THRES, tmp, ER_star, ER_star_tmp, Norm |
29 | 1 | equemene | REAL(KREAL), PARAMETER :: eps=1e-12 |
30 | 1 | equemene | REAL(KREAL), PARAMETER :: crit=1e-8 |
31 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Tanf(:) ! NCoord |
32 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: HFree(:) ! NFree*NFree |
33 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Htmp(:,:) ! NCoord,NFree |
34 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Grad_free(:), Step_free(:) ! NFree |
35 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Geom_free(:), Geom_new_free(:) ! NFree |
36 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet_free(:,:), GradSet_free(:,:) |
37 | 1 | equemene | |
38 | 1 | equemene | DEBUG=.TRUE. |
39 | 1 | equemene | PRINT=.FALSE. |
40 | 1 | equemene | |
41 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' BEGIN Step_GEDIIS_ALL '')') |
42 | 1 | equemene | |
43 | 1 | equemene | ! Initialization |
44 | 1 | equemene | IF (allocation_flag) THEN |
45 | 1 | equemene | ! allocation_flag will be set to False in SPACE_GEDIIS, so no need to modify it here |
46 | 1 | equemene | IF (ALLOCATED(GeomSet)) THEN |
47 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In allocation_flag, GEDIIS_ALL Dealloc '')') |
48 | 1 | equemene | DEALLOCATE(GeomSet,GradSet,GSave,GeomSet_free,GradSet_free) |
49 | 1 | equemene | RETURN |
50 | 1 | equemene | ELSE |
51 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In allocation_flag, GEDIIS_ALL Alloc '')') |
52 | 1 | equemene | ALLOCATE(GeomSet(NGeomF,MRESET*NCoord),GradSet(NGeomF,MRESET*NCoord),GSAVE(NGeomF,NCoord)) |
53 | 1 | equemene | ALLOCATE(GeomSet_free(NGeomF,MRESET*NCoord),GradSet_free(NGeomF,MRESET*NCoord)) |
54 | 1 | equemene | ALLOCATE(MSET(NGeomF),FRST(NGeomF),ESET(NGeomF,MRESET)) |
55 | 1 | equemene | DO I=1,NGeomF |
56 | 1 | equemene | FRST(I) = .TRUE. |
57 | 1 | equemene | GeomSet(I,:) = 0.d0 |
58 | 1 | equemene | GradSet(I,:) = 0.d0 |
59 | 1 | equemene | GSAVE(I,:)=0.d0 |
60 | 1 | equemene | GeomSet_free(I,:) = 0.d0 |
61 | 1 | equemene | GradSet_free(I,:) = 0.d0 |
62 | 1 | equemene | END DO |
63 | 1 | equemene | MSET(:)=0 |
64 | 1 | equemene | END IF |
65 | 1 | equemene | allocation_flag = .FALSE. |
66 | 1 | equemene | END IF ! IF (allocation_flag) THEN |
67 | 1 | equemene | |
68 | 1 | equemene | ! ADDED FROM HERE: |
69 | 1 | equemene | Call FreeMv(NCoord,Vfree) ! VFree(Ncoord,Ncoord), as of now, an Identity matrix. |
70 | 1 | equemene | ! we orthogonalize Vfree to the tangent vector of this geom only if Tangent/=0.d0 |
71 | 1 | equemene | Norm=sqrt(dot_product(Tangent,Tangent)) |
72 | 1 | equemene | IF (Norm.GT.eps) THEN |
73 | 1 | equemene | ALLOCATE(Tanf(NCoord)) |
74 | 1 | equemene | |
75 | 1 | equemene | ! We normalize Tangent |
76 | 1 | equemene | Tangent=Tangent/Norm |
77 | 1 | equemene | |
78 | 1 | equemene | ! We convert Tangent into Vfree only displacements. This is useless for now (2007.Apr.23) |
79 | 1 | equemene | ! as Vfree=Id matrix but it will be usefull as soon as we introduce constraints. |
80 | 1 | equemene | DO I=1,NCoord |
81 | 1 | equemene | Tanf(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Tangent) |
82 | 1 | equemene | END DO |
83 | 1 | equemene | Tangent=0.d0 |
84 | 1 | equemene | DO I=1,NCoord |
85 | 1 | equemene | Tangent=Tangent+Tanf(I)*Vfree(:,I) |
86 | 1 | equemene | END DO |
87 | 1 | equemene | ! first we subtract Tangent from vfree |
88 | 1 | equemene | DO I=1,NCoord |
89 | 1 | equemene | Norm=dot_product(reshape(vfree(:,I),(/NCoord/)),Tangent) |
90 | 1 | equemene | Vfree(:,I)=Vfree(:,I)-Norm*Tangent |
91 | 1 | equemene | END DO |
92 | 1 | equemene | |
93 | 1 | equemene | Idx=0. |
94 | 1 | equemene | ! Schmidt orthogonalization of the Vfree vectors |
95 | 1 | equemene | DO I=1,NCoord |
96 | 1 | equemene | ! We subtract the first vectors, we do it twice as the Schmidt procedure is not numerically stable. |
97 | 1 | equemene | DO Isch=1,2 |
98 | 1 | equemene | DO J=1,Idx |
99 | 1 | equemene | Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,J),(/NCoord/))) |
100 | 1 | equemene | Vfree(:,I)=Vfree(:,I)-Norm*Vfree(:,J) |
101 | 1 | equemene | END DO |
102 | 1 | equemene | END DO |
103 | 1 | equemene | Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,I),(/NCoord/))) |
104 | 1 | equemene | IF (Norm.GE.crit) THEN |
105 | 1 | equemene | Idx=Idx+1 |
106 | 1 | equemene | Vfree(:,Idx)=Vfree(:,I)/sqrt(Norm) |
107 | 1 | equemene | END IF |
108 | 1 | equemene | END DO |
109 | 1 | equemene | |
110 | 1 | equemene | IF (Idx/= NCoord-1) THEN |
111 | 1 | equemene | WRITE(*,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
112 | 1 | equemene | WRITE(IOOut,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
113 | 1 | equemene | STOP |
114 | 1 | equemene | END IF |
115 | 1 | equemene | |
116 | 1 | equemene | DEALLOCATE(Tanf) |
117 | 1 | equemene | NFree=Idx |
118 | 1 | equemene | ELSE ! Tangent =0, matches IF (Norm.GT.eps) THEN |
119 | 1 | equemene | if (debug) WRITE(*,*) "Tangent=0, using full displacement" |
120 | 1 | equemene | NFree=NCoord |
121 | 1 | equemene | END IF !IF (Norm.GT.eps) THEN |
122 | 1 | equemene | |
123 | 1 | equemene | if (debug) WRITE(*,*) 'DBG Step_GEDIIS_All, IGeom, NFree=', IGeom, NFree |
124 | 1 | equemene | |
125 | 1 | equemene | ! We now calculate the new step |
126 | 1 | equemene | ! we project the hessian onto the free vectors |
127 | 1 | equemene | ALLOCATE(HFree(NFree*NFree),Htmp(NCoord,NFree),Grad_free(NFree)) |
128 | 1 | equemene | ALLOCATE(Geom_free(NFree),Step_free(NFree),Geom_new_free(NFree)) |
129 | 1 | equemene | DO J=1,NFree |
130 | 1 | equemene | DO I=1,NCoord |
131 | 1 | equemene | Htmp(I,J)=0.d0 |
132 | 1 | equemene | DO K=1,NCoord |
133 | 1 | equemene | Htmp(I,J)=Htmp(I,J)+Hess(((I-1)*NCoord)+K)*Vfree(K,J) |
134 | 1 | equemene | END DO |
135 | 1 | equemene | END DO |
136 | 1 | equemene | END DO |
137 | 1 | equemene | DO J=1,NFree |
138 | 1 | equemene | DO I=1,NFree |
139 | 1 | equemene | HFree(I+((J-1)*NFree))=0.d0 |
140 | 1 | equemene | DO K=1,NCoord |
141 | 1 | equemene | HFree(I+((J-1)*NFree))=HFree(I+((J-1)*NFree))+Vfree(K,I)*Htmp(K,J) |
142 | 1 | equemene | END DO |
143 | 1 | equemene | END DO |
144 | 1 | equemene | END DO |
145 | 1 | equemene | |
146 | 1 | equemene | DO I=1,NFree |
147 | 1 | equemene | Grad_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Grad) |
148 | 1 | equemene | Geom_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Geom) |
149 | 1 | equemene | END DO |
150 | 1 | equemene | !ADDED ENDS HERE.*********************************************** |
151 | 1 | equemene | |
152 | 1 | equemene | ! SPACE_GEDIIS SIMPLY LOADS THE CURRENT VALUES OF Geom AND Grad INTO THE ARRAYS GeomSet |
153 | 1 | equemene | ! AND GradSet, MSET is set to zero and then 1 in SPACE_GEDIIS_All at first iteration. |
154 | 1 | equemene | CALL SPACE_GEDIIS_All(NGeomF,IGeom,MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
155 | 1 | equemene | |
156 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' GEDIIS after SPACE_GEDIIS_ALL '')') |
157 | 1 | equemene | |
158 | 1 | equemene | DO J=1,MSet(IGeom) |
159 | 1 | equemene | DO K=1,NFree |
160 | 1 | equemene | GradSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
161 | 1 | equemene | GradSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
162 | 1 | equemene | GeomSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
163 | 1 | equemene | GeomSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
164 | 1 | equemene | END DO |
165 | 1 | equemene | END DO |
166 | 1 | equemene | |
167 | 1 | equemene | ! INITIALIZE SOME VARIABLES AND CONSTANTS: |
168 | 1 | equemene | NGEDIIS = MSET(IGeom) !MSET=mth iteration |
169 | 1 | equemene | MPLUS = MSET(IGeom) + 1 |
170 | 1 | equemene | MM = MPLUS * MPLUS |
171 | 1 | equemene | |
172 | 1 | equemene | ! CONSTRUCT THE GEDIIS MATRIX: |
173 | 1 | equemene | ! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)> |
174 | 1 | equemene | JJ=0 |
175 | 1 | equemene | INV=-NFree |
176 | 1 | equemene | DO I=1,MSET(IGeom) |
177 | 1 | equemene | INV=INV+NFree |
178 | 1 | equemene | JNV=-NFree |
179 | 1 | equemene | DO J=1,MSET(IGeom) |
180 | 1 | equemene | JNV=JNV+NFree |
181 | 1 | equemene | JJ = JJ + 1 |
182 | 1 | equemene | B(JJ)=0.D0 |
183 | 1 | equemene | DO K=1, NFree |
184 | 1 | equemene | B(JJ) = B(JJ) + (((GradSet_free(IGeom,INV+K)-GradSet_free(IGeom,JNV+K))* & |
185 | 1 | equemene | (GeomSet_free(IGeom,INV+K)-GeomSet_free(IGeom,JNV+K)))/2.D0) |
186 | 1 | equemene | END DO |
187 | 1 | equemene | END DO |
188 | 1 | equemene | END DO |
189 | 1 | equemene | |
190 | 1 | equemene | ! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
191 | 1 | equemene | ! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
192 | 1 | equemene | DO I=MSET(IGeom)-1,1,-1 |
193 | 1 | equemene | DO J=MSET(IGeom),1,-1 |
194 | 1 | equemene | B(I*MSET(IGeom)+J+I) = B(I*MSET(IGeom)+J) |
195 | 1 | equemene | END DO |
196 | 1 | equemene | END DO |
197 | 1 | equemene | |
198 | 1 | equemene | ! For the last row and last column of GEDIIS matrix: |
199 | 1 | equemene | DO I=1,MPLUS |
200 | 1 | equemene | B(MPLUS*I) = 1.D0 |
201 | 1 | equemene | B(MPLUS*MSET(IGeom)+I) = 1.D0 |
202 | 1 | equemene | END DO |
203 | 1 | equemene | B(MM) = 0.D0 |
204 | 1 | equemene | |
205 | 1 | equemene | DO I=1, MPLUS |
206 | 1 | equemene | !WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
207 | 1 | equemene | END DO |
208 | 1 | equemene | |
209 | 1 | equemene | ! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
210 | 1 | equemene | 80 CONTINUE |
211 | 1 | equemene | DO I=1,MM !MM = (MSET(IGeom)+1) * (MSET(IGeom)+1) |
212 | 1 | equemene | BS(I) = B(I) !just a copy of the original B (GEDIIS) matrix |
213 | 1 | equemene | END DO |
214 | 1 | equemene | |
215 | 1 | equemene | IF (NGEDIIS .NE. MSET(IGeom)) THEN |
216 | 1 | equemene | DO II=1,MSET(IGeom)-NGEDIIS |
217 | 1 | equemene | XMAX = -1.D10 |
218 | 1 | equemene | ITERA = 0 |
219 | 1 | equemene | DO I=1,MSET(IGeom) |
220 | 1 | equemene | XNORM = 0.D0 |
221 | 1 | equemene | INV = (I-1) * MPLUS |
222 | 1 | equemene | DO J=1,MSET(IGeom) |
223 | 1 | equemene | XNORM = XNORM + ABS(B(INV + J)) |
224 | 1 | equemene | END DO |
225 | 1 | equemene | IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
226 | 1 | equemene | XMAX = XNORM |
227 | 1 | equemene | ITERA = I |
228 | 1 | equemene | IONE = INV + I |
229 | 1 | equemene | ENDIF |
230 | 1 | equemene | END DO |
231 | 1 | equemene | |
232 | 1 | equemene | DO I=1,MPLUS |
233 | 1 | equemene | INV = (I-1) * MPLUS |
234 | 1 | equemene | DO J=1,MPLUS |
235 | 1 | equemene | JNV = (J-1) * MPLUS |
236 | 1 | equemene | IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
237 | 1 | equemene | B(JNV + I) = B(INV + J) |
238 | 1 | equemene | END DO |
239 | 1 | equemene | END DO |
240 | 1 | equemene | B(IONE) = 1.0D0 |
241 | 1 | equemene | END DO |
242 | 1 | equemene | END IF ! matches IF (NGEDIIS .NE. MSET(IGeom)) THEN |
243 | 1 | equemene | |
244 | 1 | equemene | ! SCALE GEDIIS MATRIX BEFORE INVERSION: |
245 | 1 | equemene | DO I=1,MPLUS |
246 | 1 | equemene | II = MPLUS * (I-1) + I ! B(II)=diagonal elements of B matrix |
247 | 1 | equemene | GSAVE(IGeom,I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
248 | 1 | equemene | !Print *, 'GSAVE(',IGeom,',',I,')=', GSAVE(IGeom,I) |
249 | 1 | equemene | END DO |
250 | 1 | equemene | GSAVE(IGeom,MPLUS) = 1.D0 |
251 | 1 | equemene | DO I=1,MPLUS |
252 | 1 | equemene | DO J=1,MPLUS |
253 | 1 | equemene | IJ = MPLUS * (I-1) + J |
254 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
255 | 1 | equemene | END DO |
256 | 1 | equemene | END DO |
257 | 1 | equemene | |
258 | 1 | equemene | ! INVERT THE GEDIIS MATRIX B: |
259 | 1 | equemene | DO I=1, MPLUS |
260 | 1 | equemene | !WRITE(*,'(10(1X,F20.4))') B((I-1)*MPLUS+1:I*(MPLUS)) |
261 | 1 | equemene | END DO |
262 | 1 | equemene | |
263 | 1 | equemene | CALL MINV(B,MPLUS,DET) ! matrix inversion. |
264 | 1 | equemene | |
265 | 1 | equemene | DO I=1, MPLUS |
266 | 1 | equemene | !WRITE(*,'(10(1X,F20.16))') B((I-1)*MPLUS+1:I*(MPLUS)) |
267 | 1 | equemene | END DO |
268 | 1 | equemene | |
269 | 1 | equemene | DO I=1,MPLUS |
270 | 1 | equemene | DO J=1,MPLUS |
271 | 1 | equemene | IJ = MPLUS * (I-1) + J |
272 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
273 | 1 | equemene | END DO |
274 | 1 | equemene | END DO |
275 | 1 | equemene | |
276 | 1 | equemene | ! COMPUTE THE NEW INTERPOLATED PARAMETER VECTOR (Geometry): |
277 | 1 | equemene | ci=0.d0 |
278 | 1 | equemene | ci_tmp=0.d0 |
279 | 1 | equemene | |
280 | 1 | equemene | ci_lt_zero= .FALSE. |
281 | 1 | equemene | DO I=1, MSET(IGeom) |
282 | 1 | equemene | DO J=1, MSET(IGeom) ! B matrix is read column-wise |
283 | 1 | equemene | ci(I)=ci(I)+B((J-1)*(MPLUS)+I)*ESET(IGeom,J) !ESET is energy set. |
284 | 1 | equemene | END DO |
285 | 1 | equemene | ci(I)=ci(I)+B((MPLUS-1)*(MPLUS)+I) |
286 | 1 | equemene | !Print *, 'NO ci < 0 yet, c(',I,')=', ci(I) |
287 | 1 | equemene | IF((ci(I) .LT. 0.0D0) .OR. (ci(I) .GT. 1.0D0)) THEN |
288 | 1 | equemene | ci_lt_zero=.TRUE. |
289 | 1 | equemene | EXIT |
290 | 1 | equemene | END IF |
291 | 1 | equemene | END DO !matches DO I=1, MSET(IGeom) |
292 | 1 | equemene | |
293 | 1 | equemene | IF (ci_lt_zero) Then |
294 | 1 | equemene | cis_zero = 0 |
295 | 1 | equemene | ER_star = 0.D0 |
296 | 1 | equemene | ER_star_tmp = 1e32 |
297 | 1 | equemene | |
298 | 1 | equemene | ! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
299 | 1 | equemene | JJ=0 |
300 | 1 | equemene | INV=-NFree |
301 | 1 | equemene | DO IX=1,MSET(IGeom) |
302 | 1 | equemene | INV=INV+NFree |
303 | 1 | equemene | JNV=-NFree |
304 | 1 | equemene | DO JX=1,MSET(IGeom) |
305 | 1 | equemene | JNV=JNV+NFree |
306 | 1 | equemene | JJ = JJ + 1 |
307 | 1 | equemene | BST(JJ)=0.D0 |
308 | 1 | equemene | DO KX=1, NFree |
309 | 1 | equemene | BST(JJ) = BST(JJ) + (((GradSet_free(IGeom,INV+KX)-GradSet_free(IGeom,JNV+KX))* & |
310 | 1 | equemene | (GeomSet_free(IGeom,INV+KX)-GeomSet_free(IGeom,JNV+KX)))/2.D0) |
311 | 1 | equemene | END DO |
312 | 1 | equemene | END DO |
313 | 1 | equemene | END DO |
314 | 1 | equemene | |
315 | 1 | equemene | DO I=1, (2**MSET(IGeom))-2 ! all (2**MSET(IGeom))-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
316 | 1 | equemene | !Print *, 'Entering into DO I=1, (2**MSET(IGeom))-2 loop, MSET(IGeom)=', MSET(IGeom), ', I=', I |
317 | 1 | equemene | ci(:)=1.D0 |
318 | 1 | equemene | ! find out which cis are zero in I: |
319 | 1 | equemene | DO IX=1, MSET(IGeom) |
320 | 1 | equemene | JJ=IAND(I, 2**(IX-1)) |
321 | 1 | equemene | IF(JJ .EQ. 0) Then |
322 | 1 | equemene | ci(IX)=0.D0 |
323 | 1 | equemene | END IF |
324 | 1 | equemene | END DO |
325 | 1 | equemene | |
326 | 1 | equemene | ci_lt_zero = .FALSE. |
327 | 1 | equemene | ! B_ij calculations from <B_ij=(g_i-g_j)(R_i-R_j)>, Full B matrix created first and then rows and columns are removed. |
328 | 1 | equemene | DO IX=1, MSET(IGeom)*MSET(IGeom) |
329 | 1 | equemene | B(IX) = BST(IX) !just a copy of the original B (GEDIIS) matrix |
330 | 1 | equemene | END DO |
331 | 1 | equemene | |
332 | 1 | equemene | ! Removal of KXth row and KXth column in order to accomodate cI to be zero: |
333 | 1 | equemene | current_size_B_mat=MSET(IGeom) |
334 | 1 | equemene | cis_zero = 0 |
335 | 1 | equemene | ! The bits of I (index of the upper loop 'DO I=1, (2**MSET(IGeom))-2'), gives which cis are zero. |
336 | 1 | equemene | DO KX=1, MSET(IGeom) ! searching for each bit of I (index of the upper loop 'DO I=1, (2**MSET(IGeom))-2') |
337 | 1 | equemene | IF (ci(KX) .EQ. 0.D0) Then !remove KXth row and KXth column |
338 | 1 | equemene | cis_zero = cis_zero + 1 |
339 | 1 | equemene | |
340 | 1 | equemene | ! First row removal: (B matrix is read column-wise) |
341 | 1 | equemene | JJ=0 |
342 | 1 | equemene | DO IX=1,current_size_B_mat ! columns reading |
343 | 1 | equemene | DO JX=1,current_size_B_mat ! rows reading |
344 | 1 | equemene | IF (JX .NE. KX) Then |
345 | 1 | equemene | JJ = JJ + 1 |
346 | 1 | equemene | B_tmp(JJ) = B((IX-1)*current_size_B_mat+JX) |
347 | 1 | equemene | END IF |
348 | 1 | equemene | END DO |
349 | 1 | equemene | END DO |
350 | 1 | equemene | |
351 | 1 | equemene | DO IX=1,current_size_B_mat*(current_size_B_mat-1) |
352 | 1 | equemene | B(IX) = B_tmp(IX) |
353 | 1 | equemene | END DO |
354 | 1 | equemene | |
355 | 1 | equemene | ! Now column removal: |
356 | 1 | equemene | JJ=0 |
357 | 1 | equemene | DO IX=1,KX-1 ! columns reading |
358 | 1 | equemene | DO JX=1,current_size_B_mat-1 ! rows reading |
359 | 1 | equemene | JJ = JJ + 1 |
360 | 1 | equemene | B_tmp(JJ) = B(JJ) |
361 | 1 | equemene | END DO |
362 | 1 | equemene | END DO |
363 | 1 | equemene | |
364 | 1 | equemene | DO IX=KX+1,current_size_B_mat |
365 | 1 | equemene | DO JX=1,current_size_B_mat-1 |
366 | 1 | equemene | JJ = JJ + 1 |
367 | 1 | equemene | B_tmp(JJ) = B(JJ+current_size_B_mat-1) |
368 | 1 | equemene | END DO |
369 | 1 | equemene | END DO |
370 | 1 | equemene | |
371 | 1 | equemene | DO IX=1,(current_size_B_mat-1)*(current_size_B_mat-1) |
372 | 1 | equemene | B(IX) = B_tmp(IX) |
373 | 1 | equemene | END DO |
374 | 1 | equemene | current_size_B_mat = current_size_B_mat - 1 |
375 | 1 | equemene | END IF ! matches IF (ci(KX) .EQ. 0.D0) Then !remove |
376 | 1 | equemene | END DO ! matches DO KX=1, MSET(IGeom) |
377 | 1 | equemene | |
378 | 1 | equemene | ! The following shifting is required to correct indices of B_ij elements in the GEDIIS matrix. |
379 | 1 | equemene | ! The correction is needed because the last coloumn and row of the matrix contains all 1 and one zero. |
380 | 1 | equemene | DO IX=MSET(IGeom)-cis_zero-1,1,-1 |
381 | 1 | equemene | DO JX=MSET(IGeom)-cis_zero,1,-1 |
382 | 1 | equemene | B(IX*(MSET(IGeom)-cis_zero)+JX+IX) = B(IX*(MSET(IGeom)-cis_zero)+JX) |
383 | 1 | equemene | END DO |
384 | 1 | equemene | END DO |
385 | 1 | equemene | |
386 | 1 | equemene | ! for last row and last column of GEDIIS matrix |
387 | 1 | equemene | DO IX=1,MPLUS-cis_zero |
388 | 1 | equemene | B((MPLUS-cis_zero)*IX) = 1.D0 |
389 | 1 | equemene | B((MPLUS-cis_zero)*(MSET(IGeom)-cis_zero)+IX) = 1.D0 |
390 | 1 | equemene | END DO |
391 | 1 | equemene | B((MPLUS-cis_zero) * (MPLUS-cis_zero)) = 0.D0 |
392 | 1 | equemene | |
393 | 1 | equemene | DO IX=1, MPLUS |
394 | 1 | equemene | !WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
395 | 1 | equemene | END DO |
396 | 1 | equemene | |
397 | 1 | equemene | ! ELIMINATE ERROR VECTORS WITH THE LARGEST NORM: |
398 | 1 | equemene | IF (NGEDIIS .NE. MSET(IGeom)) THEN |
399 | 1 | equemene | JX = min(MSET(IGeom)-NGEDIIS,MSET(IGeom)-cis_zero-1) |
400 | 1 | equemene | DO II=1,JX |
401 | 1 | equemene | XMAX = -1.D10 |
402 | 1 | equemene | ITERA = 0 |
403 | 1 | equemene | DO IX=1,MSET(IGeom)-cis_zero |
404 | 1 | equemene | XNORM = 0.D0 |
405 | 1 | equemene | INV = (IX-1) * (MPLUS-cis_zero) |
406 | 1 | equemene | DO J=1,MSET(IGeom)-cis_zero |
407 | 1 | equemene | XNORM = XNORM + ABS(B(INV + J)) |
408 | 1 | equemene | END DO |
409 | 1 | equemene | IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
410 | 1 | equemene | XMAX = XNORM |
411 | 1 | equemene | ITERA = IX |
412 | 1 | equemene | IONE = INV + IX |
413 | 1 | equemene | ENDIF |
414 | 1 | equemene | END DO |
415 | 1 | equemene | |
416 | 1 | equemene | DO IX=1,MPLUS-cis_zero |
417 | 1 | equemene | INV = (IX-1) * (MPLUS-cis_zero) |
418 | 1 | equemene | DO J=1,MPLUS-cis_zero |
419 | 1 | equemene | JNV = (J-1) * (MPLUS-cis_zero) |
420 | 1 | equemene | IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
421 | 1 | equemene | B(JNV + IX) = B(INV + J) |
422 | 1 | equemene | END DO |
423 | 1 | equemene | END DO |
424 | 1 | equemene | B(IONE) = 1.0D0 |
425 | 1 | equemene | END DO |
426 | 1 | equemene | END IF ! matches IF (NGEDIIS .NE. MSET(IGeom)) THEN |
427 | 1 | equemene | |
428 | 1 | equemene | ! SCALE GEDIIS MATRIX BEFORE INVERSION: |
429 | 1 | equemene | DO IX=1,MPLUS-cis_zero |
430 | 1 | equemene | II = (MPLUS-cis_zero) * (IX-1) + IX ! B(II)=diagonal elements of B matrix |
431 | 1 | equemene | GSAVE(IGeom,IX) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
432 | 1 | equemene | END DO |
433 | 1 | equemene | GSAVE(IGeom,MPLUS-cis_zero) = 1.D0 |
434 | 1 | equemene | DO IX=1,MPLUS-cis_zero |
435 | 1 | equemene | DO JX=1,MPLUS-cis_zero |
436 | 1 | equemene | IJ = (MPLUS-cis_zero) * (IX-1) + JX |
437 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(IGeom,IX) * GSAVE(IGeom,JX) |
438 | 1 | equemene | END DO |
439 | 1 | equemene | END DO |
440 | 1 | equemene | |
441 | 1 | equemene | ! INVERT THE GEDIIS MATRIX B: |
442 | 1 | equemene | CALL MINV(B,MPLUS-cis_zero,DET) ! matrix inversion. |
443 | 1 | equemene | |
444 | 1 | equemene | DO IX=1,MPLUS-cis_zero |
445 | 1 | equemene | DO JX=1,MPLUS-cis_zero |
446 | 1 | equemene | IJ = (MPLUS-cis_zero) * (IX-1) + JX |
447 | 1 | equemene | B(IJ) = B(IJ) * GSAVE(IGeom,IX) * GSAVE(IGeom,JX) |
448 | 1 | equemene | END DO |
449 | 1 | equemene | END DO |
450 | 1 | equemene | |
451 | 1 | equemene | DO IX=1, MPLUS |
452 | 1 | equemene | !WRITE(*,'(10(1X,F20.4))') B((IX-1)*MPLUS+1:IX*(MPLUS)) |
453 | 1 | equemene | END DO |
454 | 1 | equemene | |
455 | 1 | equemene | ! ESET is rearranged to handle zero cis and stored in ESET_tmp: |
456 | 1 | equemene | JJ=0 |
457 | 1 | equemene | DO IX=1, MSET(IGeom) |
458 | 1 | equemene | IF (ci(IX) .NE. 0) Then |
459 | 1 | equemene | JJ=JJ+1 |
460 | 1 | equemene | ESET_tmp(JJ) = ESET(IGeom,IX) |
461 | 1 | equemene | END IF |
462 | 1 | equemene | END DO |
463 | 1 | equemene | |
464 | 1 | equemene | ! DETERMINATION OF nonzero cis: |
465 | 1 | equemene | MyPointer=1 |
466 | 1 | equemene | DO IX=1, MSET(IGeom)-cis_zero |
467 | 1 | equemene | tmp = 0.D0 |
468 | 1 | equemene | DO J=1, MSET(IGeom)-cis_zero ! B matrix is read column-wise |
469 | 1 | equemene | tmp=tmp+B((J-1)*(MPLUS-cis_zero)+IX)*ESET_tmp(J) |
470 | 1 | equemene | END DO |
471 | 1 | equemene | tmp=tmp+B((MPLUS-cis_zero-1)*(MPLUS-cis_zero)+IX) |
472 | 1 | equemene | IF((tmp .LT. 0.0D0) .OR. (tmp .GT. 1.0D0)) THEN |
473 | 1 | equemene | ci_lt_zero=.TRUE. |
474 | 1 | equemene | EXIT |
475 | 1 | equemene | ELSE |
476 | 1 | equemene | DO JX=MyPointer,MSET(IGeom) |
477 | 1 | equemene | IF (ci(JX) .NE. 0) Then |
478 | 1 | equemene | ci(JX) = tmp |
479 | 1 | equemene | MyPointer=JX+1 |
480 | 1 | equemene | EXIT |
481 | 1 | equemene | END IF |
482 | 1 | equemene | END DO |
483 | 1 | equemene | END IF |
484 | 1 | equemene | END DO !matches DO I=1, MSET(IGeom)-cis_zero |
485 | 1 | equemene | !Print *, 'Local set of cis, first 10:, MSET(IGeom)=', MSET(IGeom), ', I of (2**MSET(IGeom))-2=', I |
486 | 1 | equemene | !WRITE(*,'(10(1X,F20.4))') ci(1:MSET(IGeom)) |
487 | 1 | equemene | !Print *, 'Local set of cis ends:****************************************' |
488 | 1 | equemene | |
489 | 1 | equemene | ! new set of cis determined based on the lower energy (ER_star): |
490 | 1 | equemene | IF (.NOT. ci_lt_zero) Then |
491 | 1 | equemene | Call Energy_GEDIIS(MRESET,MSET(IGeom),ci,GeomSet_free(IGeom,:),GradSet_free(IGeom,:),ESET(IGeom,:),NFree,ER_star) |
492 | 1 | equemene | IF (ER_star .LT. ER_star_tmp) Then |
493 | 1 | equemene | ci_tmp=ci |
494 | 1 | equemene | ER_star_tmp = ER_star |
495 | 1 | equemene | END IF |
496 | 1 | equemene | END IF ! matches IF (.NOT. ci_lt_zero) Then |
497 | 1 | equemene | END DO !matches DO I=1, (2**K)-2 ! all (2**K)-2 combinations of cis, except the one where all cis are .GT. 0 and .LT. 1 |
498 | 1 | equemene | ci = ci_tmp |
499 | 1 | equemene | END IF! matches IF (ci_lt_zero) Then |
500 | 1 | equemene | |
501 | 1 | equemene | Print *, 'Final set of cis, first 10:***********************************' |
502 | 1 | equemene | WRITE(*,'(10(1X,F20.4))') ci(1:MSET(IGeom)) |
503 | 1 | equemene | Print *, 'Final set of cis ends:****************************************' |
504 | 1 | equemene | Geom_new_free(:) = 0.D0 |
505 | 1 | equemene | DO I=1, MSET(IGeom) |
506 | 1 | equemene | Geom_new_free(:) = Geom_new_free(:) + (ci(I)*GeomSet_free(IGeom,(I-1)*NFree+1:I*NFree)) !MPLUS=MSET(IGeom)+1 |
507 | 1 | equemene | ! R_(N+1)=R*+DeltaR: |
508 | 1 | equemene | DO J=1, NFree |
509 | 1 | equemene | tmp=0.D0 |
510 | 1 | equemene | DO K=1,NFree |
511 | 1 | equemene | ! this can be commented: |
512 | 1 | equemene | !tmp=tmp+HFree((J-1)*NFree+K)*GradSet_free(IGeom,(I-1)*NFree+K) ! If Hinv=.False., then we need to invert Hess |
513 | 1 | equemene | END DO |
514 | 1 | equemene | Geom_new_free(J) = Geom_new_free(J) - (ci(I)*tmp) |
515 | 1 | equemene | END DO |
516 | 1 | equemene | END DO |
517 | 1 | equemene | |
518 | 1 | equemene | Step_free(:) = Geom_new_free(:) - Geom_free(:) |
519 | 1 | equemene | |
520 | 1 | equemene | XNORM = SQRT(DOT_PRODUCT(Step_free,Step_free)) |
521 | 1 | equemene | IF (PRINT) THEN |
522 | 1 | equemene | WRITE (6,'(/10X,''DEVIATION IN X '',F10.4,8X,''DETERMINANT '',G9.3)') XNORM, DET |
523 | 1 | equemene | !WRITE(*,'(10X,''GEDIIS COEFFICIENTS'')') |
524 | 1 | equemene | !WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET(IGeom)+I),I=1,MSET(IGeom)) |
525 | 1 | equemene | ENDIF |
526 | 1 | equemene | |
527 | 1 | equemene | ! THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
528 | 1 | equemene | THRES = MAX(10.D0**(-NFree), 1.D-25) |
529 | 1 | equemene | IF (XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES) THEN |
530 | 1 | equemene | IF (PRINT)THEN |
531 | 1 | equemene | WRITE(*,*) "THE GEDIIS MATRIX IS ILL CONDITIONED" |
532 | 1 | equemene | WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
533 | 1 | equemene | WRITE(*,*) "THE GEDIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
534 | 1 | equemene | END IF |
535 | 1 | equemene | DO K=1,MM |
536 | 1 | equemene | B(K) = BS(K) ! why this is reverted? Because "IF (NGEDIIS .GT. 0) GO TO 80", see below |
537 | 1 | equemene | END DO |
538 | 1 | equemene | NGEDIIS = NGEDIIS - 1 |
539 | 1 | equemene | IF (NGEDIIS .GT. 0) GO TO 80 |
540 | 1 | equemene | IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
541 | 1 | equemene | Geom_new_free(:) = Geom_free(:) ! Geom_new is set to original Geom, thus Step = Geom(:) - Geom_new(:)=zero, the whole |
542 | 1 | equemene | ! new update to Geom_new is discarded, since XNORM.GT.2.D0 .OR. DABS(DET) .LT. THRES |
543 | 1 | equemene | END IF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
544 | 1 | equemene | |
545 | 1 | equemene | !****************************************************************************************************************** |
546 | 1 | equemene | Geom_new_free(:) = 0.D0 |
547 | 1 | equemene | DO I=1, MSET(IGeom) |
548 | 1 | equemene | Geom_new_free(:) = Geom_new_free(:) + (ci(I)*GeomSet_free(IGeom,(I-1)*NFree+1:I*NFree)) !MPLUS=MSET(IGeom)+1 |
549 | 1 | equemene | ! R_(N+1)=R*+DeltaR: |
550 | 1 | equemene | DO J=1, NFree |
551 | 1 | equemene | tmp=0.D0 |
552 | 1 | equemene | DO K=1,NFree |
553 | 1 | equemene | tmp=tmp+HFree((J-1)*NFree+K)*GradSet_free(IGeom,(I-1)*NFree+K) ! If Hinv=.False., then we need to invert Hess |
554 | 1 | equemene | END DO |
555 | 1 | equemene | Geom_new_free(J) = Geom_new_free(J) - (ci(I)*tmp) |
556 | 1 | equemene | END DO |
557 | 1 | equemene | END DO |
558 | 1 | equemene | |
559 | 1 | equemene | Step_free(:) = Geom_new_free(:) - Geom_free(:) |
560 | 1 | equemene | !****************************************************************************************************************** |
561 | 1 | equemene | Step = 0.d0 |
562 | 1 | equemene | DO I=1,NFree |
563 | 1 | equemene | Step = Step + Step_free(I)*Vfree(:,I) |
564 | 1 | equemene | END DO |
565 | 1 | equemene | |
566 | 1 | equemene | DEALLOCATE(Hfree,Htmp,Grad_free,Step_free,Geom_free,Geom_new_free) |
567 | 1 | equemene | |
568 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' END Step_GEDIIS_ALL '',/)') |
569 | 1 | equemene | |
570 | 1 | equemene | END SUBROUTINE Step_GEDIIS_All |