root / src / Step_DIIS_all.f90 @ 2
Historique | Voir | Annoter | Télécharger (16,19 ko)
1 | 1 | equemene | !C HEAT is never used, not even in call of Space(...) |
---|---|---|---|
2 | 1 | equemene | !C Geom = input parameter vector (Geometry). |
3 | 1 | equemene | !C Grad = input gradient vector. |
4 | 1 | equemene | !C Geom_new = New Geometry. |
5 | 1 | equemene | |
6 | 1 | equemene | SUBROUTINE Step_diis_all(NGeomF,IGeom,Step,Geom,Grad,HP,HEAT,Hess,NCoord,allocation_flag,Tangent) |
7 | 1 | equemene | ! IMPLICIT DOUBLE PRECISION (A-H,O-Z) |
8 | 1 | equemene | |
9 | 1 | equemene | USE Io_module, only : IoOut |
10 | 1 | equemene | USE Path_module, only : Vfree |
11 | 1 | equemene | |
12 | 1 | equemene | IMPLICIT NONE |
13 | 1 | equemene | INTEGER, parameter :: KINT = kind(1) |
14 | 1 | equemene | INTEGER, parameter :: KREAL = kind(1.0d0) |
15 | 1 | equemene | |
16 | 1 | equemene | ! INCLUDE 'SIZES' |
17 | 1 | equemene | |
18 | 1 | equemene | INTEGER(KINT) :: NGeomF,IGeom |
19 | 1 | equemene | REAL(KREAL) :: Geom_new(NCoord),Geom(NCoord),Grad(NCoord) |
20 | 1 | equemene | REAL(KREAL) :: Hess(NCoord*NCoord),Step(NCoord) |
21 | 1 | equemene | REAL(KREAL) :: HEAT,HP |
22 | 1 | equemene | LOGICAL :: allocation_flag |
23 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: NCoord |
24 | 1 | equemene | REAL(KREAL), INTENT(INOUT) :: Tangent(Ncoord) |
25 | 1 | equemene | |
26 | 1 | equemene | !************************************************************************ |
27 | 1 | equemene | !* * |
28 | 1 | equemene | !* DIIS PERFORMS DIRECT INVERSION IN THE ITERATIVE SUBSPACE * |
29 | 1 | equemene | !* * |
30 | 1 | equemene | !* THIS INVOLVES SOLVING FOR C IN Geom(NEW) = Geom' - HG' * |
31 | 1 | equemene | !* * |
32 | 1 | equemene | !* WHERE Geom' = SUM(C(I)Geom(I), THE C COEFFICIENTES COMING FROM * |
33 | 1 | equemene | !* * |
34 | 1 | equemene | !* | B 1 | . | C | = | 0 | * |
35 | 1 | equemene | !* | 1 0 | |-L | | 1 | * |
36 | 1 | equemene | !* * |
37 | 1 | equemene | !* WHERE B(I,J) =GRAD(I)H(T)HGRAD(J) GRAD(I) = GRADIENT ON CYCLE I * |
38 | 1 | equemene | !* Hess = INVERSE HESSIAN * |
39 | 1 | equemene | !* * |
40 | 1 | equemene | !* REFERENCE * |
41 | 1 | equemene | !* * |
42 | 1 | equemene | !* P. CSASZAR, P. PULAY, J. MOL. STRUCT. (THEOCHEM), 114, 31 (1984) * |
43 | 1 | equemene | !* * |
44 | 1 | equemene | !************************************************************************ |
45 | 1 | equemene | !************************************************************************ |
46 | 1 | equemene | !* * |
47 | 1 | equemene | !* GEOMETRY OPTIMIZATION USING THE METHOD OF DIRECT INVERSION IN * |
48 | 1 | equemene | !* THE ITERATIVE SUBSPACE (GDIIS), COMBINED WITH THE BFGS OPTIMIZER * |
49 | 1 | equemene | !* (A VARIABLE METRIC METHOD) * |
50 | 1 | equemene | !* * |
51 | 1 | equemene | !* WRITTEN BY PETER L. CUMMINS, UNIVERSITY OF SYDNEY, AUSTRALIA * |
52 | 1 | equemene | !* * |
53 | 1 | equemene | !* REFERENCE * |
54 | 1 | equemene | !* * |
55 | 1 | equemene | !* "COMPUTATIONAL STRATEGIES FOR THE OPTIMIZATION OF EQUILIBRIUM * |
56 | 1 | equemene | !* GEOMETRIES AND TRANSITION-STATE STRUCTURES AT THE SEMIEMPIRICAL * |
57 | 1 | equemene | !* LEVEL", PETER L. CUMMINS, JILL E. GREADY, J. COMP. CHEM., 10, * |
58 | 1 | equemene | !* 939-950 (1989). * |
59 | 1 | equemene | !* * |
60 | 1 | equemene | !* MODIFIED BY JJPS TO CONFORM TO EXISTING MOPAC CONVENTIONS * |
61 | 1 | equemene | !* * |
62 | 1 | equemene | !************************************************************************ |
63 | 1 | equemene | |
64 | 1 | equemene | ! MRESET = maximum number of iterations. |
65 | 1 | equemene | INTEGER(KINT), PARAMETER :: MRESET=15, M2=(MRESET+1)*(MRESET+1) !M2 = 256 |
66 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet(:,:),GradSet(:,:),ERR(:,:) ! MRESET*NCoord |
67 | 1 | equemene | REAL(KREAL), SAVE :: ESET(MRESET) |
68 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: DXTMP(:,:),GSAVE(:,:) !NCoord, why DXTMP has SAVE attribute?? |
69 | 1 | equemene | REAL(KREAL) :: B(M2),BS(M2),BST(M2) |
70 | 1 | equemene | LOGICAL DEBUG, PRINT |
71 | 1 | equemene | INTEGER(KINT), ALLOCATABLE, SAVE :: MSET(:) |
72 | 1 | equemene | LOGICAL, ALLOCATABLE, SAVE :: FRST(:) |
73 | 1 | equemene | INTEGER(KINT) :: NDIIS, MPLUS, INV, ITERA, MM, NFree, I, J, K |
74 | 1 | equemene | INTEGER(KINT) :: JJ, KJ, JNV, II, IONE, IJ, INK,ITmp, Isch, Idx |
75 | 1 | equemene | REAL(KREAL) :: XMax, XNorm, S, DET, THRES, Norm |
76 | 1 | equemene | REAL(KREAL), PARAMETER :: eps=1e-12 |
77 | 1 | equemene | REAL(KREAL), PARAMETER :: crit=1e-8 |
78 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Tanf(:) ! NCoord |
79 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: HFree(:) ! NFree*NFree |
80 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Htmp(:,:) ! NCoord,NFree |
81 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Grad_free(:),Grad_new_free_inter(:),Step_free(:) ! NFree |
82 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Geom_free(:),Geom_new_free_inter(:),Geom_new_free(:) ! NFree |
83 | 1 | equemene | REAL(KREAL), ALLOCATABLE, SAVE :: GeomSet_free(:,:),GradSet_free(:,:) |
84 | 1 | equemene | |
85 | 1 | equemene | DEBUG=.TRUE. |
86 | 1 | equemene | PRINT=.TRUE. |
87 | 1 | equemene | |
88 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' BEGIN GDIIS '')') |
89 | 1 | equemene | |
90 | 1 | equemene | ! Initialization |
91 | 1 | equemene | IF (allocation_flag) THEN ! allocation_flag = .TRUE. at the begining and effective for all geometries in path. |
92 | 1 | equemene | ! FRST(IGeom) will be set to False in Space, so no need to modify it here |
93 | 1 | equemene | IF (ALLOCATED(GeomSet)) THEN |
94 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS Dealloc '')') |
95 | 1 | equemene | DEALLOCATE(GeomSet,GradSet,ERR,DXTMP,GSave,GeomSet_free,GradSet_free) |
96 | 1 | equemene | RETURN |
97 | 1 | equemene | ELSE |
98 | 1 | equemene | ! these allocated arrays need to be properly deallocated. |
99 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' In FRST, GDIIS Alloc '')') |
100 | 1 | equemene | ALLOCATE(GeomSet(NGeomF,MRESET*NCoord),GradSet(NGeomF,MRESET*NCoord),ERR(NGeomF,MRESET*NCoord)) |
101 | 1 | equemene | ALLOCATE(GeomSet_free(NGeomF,MRESET*NCoord),GradSet_free(NGeomF,MRESET*NCoord)) |
102 | 1 | equemene | ALLOCATE(DXTMP(NGeomF,NCoord),GSAVE(NGeomF,NCoord),MSET(NGeomF),FRST(NGeomF)) |
103 | 1 | equemene | DO I=1,NGeomF |
104 | 1 | equemene | FRST(I) = .TRUE. |
105 | 1 | equemene | GeomSet(I,:) = 0.d0 |
106 | 1 | equemene | GradSet(I,:) = 0.d0 |
107 | 1 | equemene | ERR(I,:) = 0.d0 |
108 | 1 | equemene | GeomSet_free(I,:) = 0.d0 |
109 | 1 | equemene | GradSet_free(I,:) = 0.d0 |
110 | 1 | equemene | DXTMP(I,:)=0.d0 |
111 | 1 | equemene | GSAVE(I,:)=0.d0 |
112 | 1 | equemene | END DO |
113 | 1 | equemene | MSET(:)=0 |
114 | 1 | equemene | END IF |
115 | 1 | equemene | allocation_flag = .FALSE. |
116 | 1 | equemene | END IF |
117 | 1 | equemene | |
118 | 1 | equemene | ! Addded from here: |
119 | 1 | equemene | Call FreeMv(NCoord,Vfree) ! VFree(Ncoord,Ncoord) |
120 | 1 | equemene | ! we orthogonalize Vfree to the tangent vector of this geom only if Tangent/=0.d0 |
121 | 1 | equemene | Norm=sqrt(dot_product(Tangent,Tangent)) |
122 | 1 | equemene | IF (Norm.GT.eps) THEN |
123 | 1 | equemene | ALLOCATE(Tanf(NCoord)) |
124 | 1 | equemene | |
125 | 1 | equemene | ! We normalize Tangent |
126 | 1 | equemene | Tangent=Tangent/Norm |
127 | 1 | equemene | |
128 | 1 | equemene | ! We convert Tangent into Vfree only displacements. This is useless for now (2007.Apr.23) |
129 | 1 | equemene | ! as Vfree=Id matrix but it will be usefull as soon as we introduce constraints. |
130 | 1 | equemene | DO I=1,NCoord |
131 | 1 | equemene | Tanf(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Tangent) |
132 | 1 | equemene | END DO |
133 | 1 | equemene | Tangent=0.d0 |
134 | 1 | equemene | DO I=1,NCoord |
135 | 1 | equemene | Tangent=Tangent+Tanf(I)*Vfree(:,I) |
136 | 1 | equemene | END DO |
137 | 1 | equemene | ! first we subtract Tangent from vfree |
138 | 1 | equemene | DO I=1,NCoord |
139 | 1 | equemene | Norm=dot_product(reshape(vfree(:,I),(/NCoord/)),Tangent) |
140 | 1 | equemene | Vfree(:,I)=Vfree(:,I)-Norm*Tangent |
141 | 1 | equemene | END DO |
142 | 1 | equemene | |
143 | 1 | equemene | Idx=0. |
144 | 1 | equemene | ! Schmidt orthogonalization of the Vfree vectors |
145 | 1 | equemene | DO I=1,NCoord |
146 | 1 | equemene | ! We subtract the first vectors, we do it twice as the Schmidt procedure is not numerically stable. |
147 | 1 | equemene | DO Isch=1,2 |
148 | 1 | equemene | DO J=1,Idx |
149 | 1 | equemene | Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,J),(/NCoord/))) |
150 | 1 | equemene | Vfree(:,I)=Vfree(:,I)-Norm*Vfree(:,J) |
151 | 1 | equemene | END DO |
152 | 1 | equemene | END DO |
153 | 1 | equemene | Norm=dot_product(reshape(Vfree(:,I),(/NCoord/)),reshape(Vfree(:,I),(/NCoord/))) |
154 | 1 | equemene | IF (Norm.GE.crit) THEN |
155 | 1 | equemene | Idx=Idx+1 |
156 | 1 | equemene | Vfree(:,Idx)=Vfree(:,I)/sqrt(Norm) |
157 | 1 | equemene | END IF |
158 | 1 | equemene | END DO |
159 | 1 | equemene | |
160 | 1 | equemene | Print *, 'Idx=', Idx |
161 | 1 | equemene | IF (Idx/= NCoord-1) THEN |
162 | 1 | equemene | WRITE(*,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
163 | 1 | equemene | WRITE(IoOut,*) "Pb in orthogonalizing Vfree to tangent for geom",IGeom |
164 | 1 | equemene | STOP |
165 | 1 | equemene | END IF |
166 | 1 | equemene | |
167 | 1 | equemene | DEALLOCATE(Tanf) |
168 | 1 | equemene | NFree=Idx |
169 | 1 | equemene | ELSE ! Tangent =0, matches IF (Norm.GT.eps) THEN |
170 | 1 | equemene | if (debug) WRITE(*,*) "Tangent=0, using full displacement" |
171 | 1 | equemene | NFree=NCoord |
172 | 1 | equemene | END IF !IF (Norm.GT.eps) THEN |
173 | 1 | equemene | |
174 | 1 | equemene | if (debug) WRITE(*,*) 'DBG Step_DIIS_All, IGeom, NFree=', IGeom, NFree |
175 | 1 | equemene | |
176 | 1 | equemene | ! We now calculate the new step |
177 | 1 | equemene | ! we project the hessian onto the free vectors |
178 | 1 | equemene | ALLOCATE(HFree(NFree*NFree),Htmp(NCoord,NFree),Grad_free(NFree),Grad_new_free_inter(NFree)) |
179 | 1 | equemene | ALLOCATE(Geom_free(NFree),Step_free(NFree),Geom_new_free_inter(NFree),Geom_new_free(NFree)) |
180 | 1 | equemene | DO J=1,NFree |
181 | 1 | equemene | DO I=1,NCoord |
182 | 1 | equemene | Htmp(I,J)=0.d0 |
183 | 1 | equemene | DO K=1,NCoord |
184 | 1 | equemene | Htmp(I,J)=Htmp(I,J)+Hess(((I-1)*NCoord)+K)*Vfree(K,J) |
185 | 1 | equemene | END DO |
186 | 1 | equemene | END DO |
187 | 1 | equemene | END DO |
188 | 1 | equemene | DO J=1,NFree |
189 | 1 | equemene | DO I=1,NFree |
190 | 1 | equemene | HFree(I+((J-1)*NFree))=0.d0 |
191 | 1 | equemene | DO K=1,NCoord |
192 | 1 | equemene | HFree(I+((J-1)*NFree))=HFree(I+((J-1)*NFree))+Vfree(K,I)*Htmp(K,J) |
193 | 1 | equemene | END DO |
194 | 1 | equemene | END DO |
195 | 1 | equemene | END DO |
196 | 1 | equemene | |
197 | 1 | equemene | DO I=1,NFree |
198 | 1 | equemene | Grad_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Grad) |
199 | 1 | equemene | Geom_free(I)=dot_product(reshape(Vfree(:,I),(/NCoord/)),Geom) |
200 | 1 | equemene | END DO |
201 | 1 | equemene | !Added Ends here.*********************************************** |
202 | 1 | equemene | |
203 | 1 | equemene | !C SPACE SIMPLY LOADS THE CURRENT VALUES OF Geom AND GRAD INTO |
204 | 1 | equemene | !C THE ARRAYS GeomSet AND GradSet |
205 | 1 | equemene | !C HEAT is never used, not even in Space_all(...) |
206 | 1 | equemene | |
207 | 1 | equemene | CALL Space_all(NGeomF,IGeom,MRESET,MSET,Geom,Grad,HEAT,NCoord,GeomSet,GradSet,ESET,FRST) |
208 | 1 | equemene | |
209 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' GDIIS after Space '')') |
210 | 1 | equemene | |
211 | 1 | equemene | DO J=1,MSet(IGeom) |
212 | 1 | equemene | DO K=1,NFree |
213 | 1 | equemene | GradSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
214 | 1 | equemene | GradSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
215 | 1 | equemene | GeomSet_free(IGeom,((J-1)*NFree)+K)=dot_product(reshape(Vfree(:,K),(/NCoord/)),& |
216 | 1 | equemene | GeomSet(IGeom,((J-1)*NCoord)+1:((J-1)*NCoord)+NCoord)) |
217 | 1 | equemene | END DO |
218 | 1 | equemene | END DO |
219 | 1 | equemene | !C |
220 | 1 | equemene | !C INITIALIZE SOME VARIABLES AND CONSTANTS |
221 | 1 | equemene | !C |
222 | 1 | equemene | NDIIS = MSET(IGeom) |
223 | 1 | equemene | MPLUS = MSET(IGeom) + 1 |
224 | 1 | equemene | MM = MPLUS * MPLUS |
225 | 1 | equemene | !C |
226 | 1 | equemene | !C COMPUTE THE APPROXIMATE ERROR VECTORS |
227 | 1 | equemene | !C |
228 | 1 | equemene | INV=-NFree |
229 | 1 | equemene | DO 30 I=1,MSET(IGeom) |
230 | 1 | equemene | INV = INV + NFree |
231 | 1 | equemene | DO 30 J=1,NFree |
232 | 1 | equemene | S = 0.D0 |
233 | 1 | equemene | KJ=(J*(J-1))/2 |
234 | 1 | equemene | DO 10 K=1,J |
235 | 1 | equemene | KJ = KJ+1 |
236 | 1 | equemene | 10 S = S - HFree(KJ) * GradSet_free(IGeom,INV+K) |
237 | 1 | equemene | DO 20 K=J+1,NFree |
238 | 1 | equemene | KJ = (K*(K-1))/2+J |
239 | 1 | equemene | 20 S = S - HFree(KJ) * GradSet_free(IGeom,INV+K) |
240 | 1 | equemene | 30 ERR(IGeom,INV+J) = S |
241 | 1 | equemene | |
242 | 1 | equemene | !C |
243 | 1 | equemene | !C CONSTRUCT THE GDIIS MATRIX |
244 | 1 | equemene | !C |
245 | 1 | equemene | DO 40 I=1,MM |
246 | 1 | equemene | 40 B(I) = 1.D0 |
247 | 1 | equemene | |
248 | 1 | equemene | JJ=0 |
249 | 1 | equemene | INV=-NFree |
250 | 1 | equemene | DO 50 I=1,MSET(IGeom) |
251 | 1 | equemene | INV=INV+NFree |
252 | 1 | equemene | JNV=-NFree |
253 | 1 | equemene | DO 50 J=1,MSET(IGeom) |
254 | 1 | equemene | JNV=JNV+NFree |
255 | 1 | equemene | JJ = JJ + 1 |
256 | 1 | equemene | B(JJ)=0.D0 |
257 | 1 | equemene | DO 50 K=1,NFree |
258 | 1 | equemene | !Print *, 'B(',JJ,')=', B(JJ) + ERR(IGeom,INV+K) * ERR(IGeom,JNV+K) |
259 | 1 | equemene | 50 B(JJ) = B(JJ) + ERR(IGeom,INV+K) * ERR(IGeom,JNV+K) |
260 | 1 | equemene | |
261 | 1 | equemene | ! The following shifting is required to correct indices of B_ij elements in the GDIIS matrix. |
262 | 1 | equemene | ! The correction is needed because the last coloumn of the matrix contains all 1 and one zero. |
263 | 1 | equemene | DO 60 I=MSET(IGeom)-1,1,-1 |
264 | 1 | equemene | DO 60 J=MSET(IGeom),1,-1 |
265 | 1 | equemene | 60 B(I*MSET(IGeom)+J+I) = B(I*MSET(IGeom)+J) |
266 | 1 | equemene | |
267 | 1 | equemene | ! For the last row and last column of GEDIIS matrix: |
268 | 1 | equemene | DO 70 I=1,MPLUS |
269 | 1 | equemene | B(MPLUS*I) = 1.D0 |
270 | 1 | equemene | 70 B(MPLUS*MSET(IGeom)+I) = 1.D0 |
271 | 1 | equemene | B(MM) = 0.D0 |
272 | 1 | equemene | !C |
273 | 1 | equemene | !C ELIMINATE ERROR VECTORS WITH THE LARGEST NORM |
274 | 1 | equemene | !C |
275 | 1 | equemene | 80 CONTINUE |
276 | 1 | equemene | DO 90 I=1,MM |
277 | 1 | equemene | 90 BS(I) = B(I) |
278 | 1 | equemene | |
279 | 1 | equemene | IF (NDIIS .EQ. MSET(IGeom)) GO TO 140 |
280 | 1 | equemene | DO 130 II=1,MSET(IGeom)-NDIIS |
281 | 1 | equemene | XMAX = -1.D10 |
282 | 1 | equemene | ITERA = 0 |
283 | 1 | equemene | DO 110 I=1,MSET(IGeom) |
284 | 1 | equemene | XNORM = 0.D0 |
285 | 1 | equemene | INV = (I-1) * MPLUS |
286 | 1 | equemene | DO 100 J=1,MSET(IGeom) |
287 | 1 | equemene | 100 XNORM = XNORM + ABS(B(INV + J)) |
288 | 1 | equemene | IF (XMAX.LT.XNORM .AND. XNORM.NE.1.0D0) THEN |
289 | 1 | equemene | XMAX = XNORM |
290 | 1 | equemene | ITERA = I |
291 | 1 | equemene | IONE = INV + I |
292 | 1 | equemene | ENDIF |
293 | 1 | equemene | 110 CONTINUE |
294 | 1 | equemene | |
295 | 1 | equemene | DO 120 I=1,MPLUS |
296 | 1 | equemene | INV = (I-1) * MPLUS |
297 | 1 | equemene | DO 120 J=1,MPLUS |
298 | 1 | equemene | JNV = (J-1) * MPLUS |
299 | 1 | equemene | IF (J.EQ.ITERA) B(INV + J) = 0.D0 |
300 | 1 | equemene | B(JNV + I) = B(INV + J) |
301 | 1 | equemene | !Print *,'B(JNV + I)=',B(JNV + I) |
302 | 1 | equemene | 120 CONTINUE |
303 | 1 | equemene | B(IONE) = 1.0D0 |
304 | 1 | equemene | 130 CONTINUE |
305 | 1 | equemene | 140 CONTINUE |
306 | 1 | equemene | !C |
307 | 1 | equemene | !C OUTPUT THE GDIIS MATRIX |
308 | 1 | equemene | !C |
309 | 1 | equemene | IF (DEBUG) THEN |
310 | 1 | equemene | WRITE(*,'(/5X,'' GDIIS MATRIX'')') |
311 | 1 | equemene | ITmp=min(12,MPLUS) |
312 | 1 | equemene | DO IJ=1,MPLUS |
313 | 1 | equemene | WRITE(*,'(12(F12.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
314 | 1 | equemene | END DO |
315 | 1 | equemene | ENDIF |
316 | 1 | equemene | !C |
317 | 1 | equemene | !C SCALE DIIS MATRIX BEFORE INVERSION |
318 | 1 | equemene | !C |
319 | 1 | equemene | DO 160 I=1,MPLUS |
320 | 1 | equemene | II = MPLUS * (I-1) + I |
321 | 1 | equemene | !Print *, 'B(',II,')=', B(II) |
322 | 1 | equemene | !Print *, 'GSave(',IGeom,',',I,')=', 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
323 | 1 | equemene | 160 GSAVE(IGeom,I) = 1.D0 / DSQRT(1.D-20+DABS(B(II))) |
324 | 1 | equemene | |
325 | 1 | equemene | GSAVE(IGeom,MPLUS) = 1.D0 |
326 | 1 | equemene | !Print *, 'GSave(',IGeom,',',MPlus,')=1.D0' |
327 | 1 | equemene | |
328 | 1 | equemene | DO 170 I=1,MPLUS |
329 | 1 | equemene | DO 170 J=1,MPLUS |
330 | 1 | equemene | IJ = MPLUS * (I-1) + J |
331 | 1 | equemene | 170 B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
332 | 1 | equemene | !C |
333 | 1 | equemene | !C OUTPUT SCALED GDIIS MATRIX |
334 | 1 | equemene | !C |
335 | 1 | equemene | IF (DEBUG) THEN |
336 | 1 | equemene | WRITE(*,'(/5X,'' GDIIS MATRIX (SCALED)'')') |
337 | 1 | equemene | ITmp=min(12,MPLUS) |
338 | 1 | equemene | DO IJ=1,MPLUS |
339 | 1 | equemene | WRITE(*,'(12(F12.4,1X))') B((IJ-1)*MPLUS+1:(IJ-1)*MPLUS+ITmp) |
340 | 1 | equemene | END DO |
341 | 1 | equemene | ENDIF |
342 | 1 | equemene | !C |
343 | 1 | equemene | !C INVERT THE GDIIS MATRIX B |
344 | 1 | equemene | !C |
345 | 1 | equemene | CALL MINV(B,MPLUS,DET) ! matrix inversion. |
346 | 1 | equemene | |
347 | 1 | equemene | DO 190 I=1,MPLUS |
348 | 1 | equemene | DO 190 J=1,MPLUS |
349 | 1 | equemene | IJ = MPLUS * (I-1) + J |
350 | 1 | equemene | !Print *, 'B(',IJ,')=', B(IJ) |
351 | 1 | equemene | !Print *, 'GSAVE(',IGeom,',',I,')=', GSAVE(IGeom,I) |
352 | 1 | equemene | !Print *, 'GSAVE(',IGeom,',',J,')=', GSAVE(IGeom,J) |
353 | 1 | equemene | !Print *, 'B(',IJ,')=', B(IJ) * GSAVE(I) * GSAVE(J) |
354 | 1 | equemene | 190 B(IJ) = B(IJ) * GSAVE(IGeom,I) * GSAVE(IGeom,J) |
355 | 1 | equemene | !C |
356 | 1 | equemene | !C COMPUTE THE INTERMEDIATE INTERPOLATED PARAMETER AND GRADIENT VECTORS |
357 | 1 | equemene | !C |
358 | 1 | equemene | !Print *, 'MSET(',IGeom,')=', MSET(IGeom), ' MPLUS=', MPLUS |
359 | 1 | equemene | DO 200 K=1,NFree |
360 | 1 | equemene | Geom_new_free_inter(K) = 0.D0 |
361 | 1 | equemene | Grad_new_free_inter(K) = 0.D0 |
362 | 1 | equemene | DO 200 I=1,MSET(IGeom) |
363 | 1 | equemene | INK = (I-1) * NFree + K |
364 | 1 | equemene | Geom_new_free_inter(K) = Geom_new_free_inter(K) + B(MPLUS*MSET(IGeom)+I) * GeomSet_free(IGeom,INK) |
365 | 1 | equemene | !Print *, 'Geom_new_free_inter(',K,')=', Geom_new_free_inter(K) |
366 | 1 | equemene | !Print *, 'B(MPLUS*MSET(',IGeom,')+',I,')=', B(MPLUS*MSET(IGeom)+I) |
367 | 1 | equemene | !Print *, 'GeomSet_free(',IGeom,',',INK,')=', GeomSet_free(IGeom,INK) |
368 | 1 | equemene | 200 Grad_new_free_inter(K) = Grad_new_free_inter(K) + B(MPLUS*MSET(IGeom)+I) * GradSet_free(IGeom,INK) |
369 | 1 | equemene | HP=0.D0 |
370 | 1 | equemene | DO 210 I=1,MSET(IGeom) |
371 | 1 | equemene | 210 HP=HP+B(MPLUS*MSET(IGeom)+I)*ESET(I) |
372 | 1 | equemene | DO 220 K=1,NFree |
373 | 1 | equemene | 220 DXTMP(IGeom,K) = Geom_free(K) - Geom_new_free_inter(K) |
374 | 1 | equemene | XNORM = SQRT(DOT_PRODUCT(DXTMP(IGeom,1:NFree),DXTMP(IGeom,1:NFree))) |
375 | 1 | equemene | IF (PRINT) THEN |
376 | 1 | equemene | WRITE (6,'(/10X,''DEVIATION IN X '',F10.6, 8X,''DETERMINANT '',G9.3)') XNORM,DET |
377 | 1 | equemene | WRITE(*,'(10X,''GDIIS COEFFICIENTS'')') |
378 | 1 | equemene | WRITE(*,'(10X,5F12.5)') (B(MPLUS*MSET(IGeom)+I),I=1,MSET(IGeom)) |
379 | 1 | equemene | ENDIF |
380 | 1 | equemene | |
381 | 1 | equemene | !C THE FOLLOWING TOLERENCES FOR XNORM AND DET ARE SOMEWHAT ARBITRARY! |
382 | 1 | equemene | THRES = MAX(10.D0**(-NFree), 1.D-25) |
383 | 1 | equemene | IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN |
384 | 1 | equemene | IF (PRINT)THEN |
385 | 1 | equemene | WRITE(*,*) "THE DIIS MATRIX IS ILL CONDITIONED" |
386 | 1 | equemene | WRITE(*,*) " - PROBABLY, VECTORS ARE LINEARLY DEPENDENT - " |
387 | 1 | equemene | WRITE(*,*) "THE DIIS STEP WILL BE REPEATED WITH A SMALLER SPACE" |
388 | 1 | equemene | END IF |
389 | 1 | equemene | DO 230 K=1,MM |
390 | 1 | equemene | 230 B(K) = BS(K) |
391 | 1 | equemene | NDIIS = NDIIS - 1 |
392 | 1 | equemene | IF (NDIIS .GT. 0) GO TO 80 |
393 | 1 | equemene | IF (PRINT) WRITE(*,'(10X,''NEWTON-RAPHSON STEP TAKEN'')') |
394 | 1 | equemene | DO 240 K=1,NFree |
395 | 1 | equemene | Geom_new_free_inter(K) = Geom_free(K) |
396 | 1 | equemene | 240 Grad_new_free_inter(K) = Grad_free(K) |
397 | 1 | equemene | ENDIF ! matches IF (XNORM.GT.2.D0 .OR. DABS(DET).LT. THRES) THEN, L378 |
398 | 1 | equemene | |
399 | 1 | equemene | ! q_{m+1} = q'_{m+1} - H^{-1}g'_{m+1} |
400 | 1 | equemene | Geom_new_free=0.d0 |
401 | 1 | equemene | DO I = 1, NFree |
402 | 1 | equemene | DO J = 1, NFree |
403 | 1 | equemene | ! If Hinv=.False., then we need to invert Hess |
404 | 1 | equemene | !Geom_new_free(:) = Geom_new_free(:) + HFree(:,I)*Grad_new_free_inter(I) |
405 | 1 | equemene | Geom_new_free(J) = Geom_new_free(J) + HFree(I+((J-1)*NFree))*Grad_new_free_inter(I) |
406 | 1 | equemene | END DO |
407 | 1 | equemene | END DO |
408 | 1 | equemene | Geom_new_free(:) = Geom_new_free_inter(:) - Geom_new_free(:) |
409 | 1 | equemene | |
410 | 1 | equemene | Step_free = Geom_new_free - Geom_free |
411 | 1 | equemene | |
412 | 1 | equemene | Step = 0.d0 |
413 | 1 | equemene | DO I=1,NFree |
414 | 1 | equemene | Step = Step + Step_free(I)*Vfree(:,I) |
415 | 1 | equemene | END DO |
416 | 1 | equemene | |
417 | 1 | equemene | DEALLOCATE(Hfree,Htmp,Grad_free,Grad_new_free_inter,Step_free,Geom_free) |
418 | 1 | equemene | DEALLOCATE(Geom_new_free_inter,Geom_new_free) |
419 | 1 | equemene | |
420 | 1 | equemene | IF (PRINT) WRITE(*,'(/,'' END GDIIS '',/)') |
421 | 1 | equemene | |
422 | 1 | equemene | END SUBROUTINE Step_diis_all |