Statistiques
| Révision :

root / src / Mat_util.f90 @ 2

Historique | Voir | Annoter | Télécharger (8,25 ko)

1 1 equemene
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 1 equemene
!
3 1 equemene
SUBROUTINE GenInv(N,A,InvA,NReal)
4 1 equemene
!!!!!!!!!!!!!!!!
5 1 equemene
  !
6 1 equemene
  !     This subroutines calculates the generalized inverse of a matrix
7 1 equemene
  !     It first diagonalize the matrix A, then inverse all non-zero
8 1 equemene
  !     eigenvalues, and forms the  InvA matrix using these new eigenvalues
9 1 equemene
  !
10 1 equemene
  !     Input:
11 1 equemene
  !     N : dimension of A
12 1 equemene
  !     NReal :Actual dimension of A
13 1 equemene
  !     A(N,N) : Initial Matrix, stored in A(Nreal,Nreal)
14 1 equemene
  !
15 1 equemene
  !     Output:
16 1 equemene
  !     InvA(N,N) : Inversed Matrix, stored in a (Nreal,NReal) matrix
17 1 equemene
  !
18 1 equemene
!!!!!!!!!!!!!!!!!!!!!!!
19 1 equemene
20 1 equemene
  Use Vartypes
21 1 equemene
  IMPLICIT NONE
22 1 equemene
23 1 equemene
  INTEGER(KINT), INTENT(IN) :: N,Nreal
24 1 equemene
  REAL(KREAL), INTENT(IN) :: A(NReal,NReal)
25 1 equemene
  REAL(KREAL), INTENT(OUT) :: InvA(NReal,NReal)
26 1 equemene
  !
27 1 equemene
28 1 equemene
  INTEGER(KINT) :: I,J,K
29 1 equemene
  REAL(KREAL), ALLOCATABLE :: EigVec(:,:) ! (Nreal,Nreal)
30 1 equemene
  REAL(KREAL), ALLOCATABLE :: EigVal(:) ! (Nreal)
31 1 equemene
  REAL(KREAL), ALLOCATABLE :: ATmp(:,:) ! (NReal,Nreal)
32 1 equemene
  REAL(KREAL) :: ss
33 1 equemene
  !
34 1 equemene
  REAL(KREAL), PARAMETER :: eps=1e-12
35 1 equemene
36 1 equemene
  ALLOCATE(EigVec(Nreal,Nreal), EigVal(Nreal),ATmp(NReal,NReal))
37 1 equemene
! A will be destroyed in Jacobi so we save it
38 1 equemene
  ATmp=A
39 1 equemene
  CALL JAcobi(ATmp,N,EigVal,EigVec,NReal)
40 1 equemene
41 1 equemene
  DO I=1,N
42 1 equemene
     IF (abs(EigVal(I)).GT.eps) EigVal(I)=1.d0/EigVal(I)
43 1 equemene
  END DO
44 1 equemene
45 1 equemene
  InvA=0.d0
46 1 equemene
  do k = 1, n
47 1 equemene
     do j = 1, n
48 1 equemene
        ss = eigval(k) * eigvec(j,k)
49 1 equemene
        do i = 1, j
50 1 equemene
            InvA(i,j) = InvA(i,j) + ss * eigvec(i,k)
51 1 equemene
         end do
52 1 equemene
      end do
53 1 equemene
   end do
54 1 equemene
   do j = 1, n
55 1 equemene
      do i = 1, j-1
56 1 equemene
         InvA(j,i) = InvA(i,j)
57 1 equemene
      end do
58 1 equemene
   end do
59 1 equemene
60 1 equemene
61 1 equemene
  DEALLOCATE(EigVec, EigVal,ATmp)
62 1 equemene
END SUBROUTINE GenInv
63 1 equemene
64 1 equemene
!============================================================
65 1 equemene
!
66 1 equemene
!     ++  Matrix diagonalization Using jacobi
67 1 equemene
!  Works only for symmetric matrices
68 1 equemene
!     EigvenVectors  : V(i,i)
69 1 equemene
!     Eigenvalues : D(i)
70 1 equemene
! PFL 30/05/03
71 1 equemene
! This versioin uses packed matrices.
72 1 equemene
! it unpacks them before calling Jacobi !
73 1 equemene
! we have  AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
74 1 equemene
!
75 1 equemene
!============================================================
76 1 equemene
!
77 1 equemene
      SUBROUTINE JacPacked(N,AP,D,V,nreal)
78 1 equemene
79 1 equemene
      Use Vartypes
80 1 equemene
      IMPLICIT NONE
81 1 equemene
82 1 equemene
      INTEGER(KINT), INTENT(IN) :: N,NREAL
83 1 equemene
      INTEGER(KINT), PARAMETER :: Max_it=500
84 1 equemene
      REAL(KREAL) :: AP(N*(N+1)/2)
85 1 equemene
      REAL(KREAL), ALLOCATABLE ::  A(:,:)
86 1 equemene
      REAL(KREAL) :: V(Nreal,Nreal),D(Nreal)
87 1 equemene
      INTEGER(KINT) :: i,j,nn
88 1 equemene
89 1 equemene
      allocate(A(nreal,nreal))
90 1 equemene
      nn=n*(n+1)/2
91 1 equemene
!      WRITE(*,*) 'Jacpa 0'
92 1 equemene
!      WRITE(*,'(I3,10(1X,F15.6))') n,(AP(i),i=1,min(nn,5))
93 1 equemene
 !     WRITE(*,*) 'Jacpa 0'
94 1 equemene
      do j=1,n
95 1 equemene
         do i=1,j
96 1 equemene
!            WRITE(*,*) i,j
97 1 equemene
            A(i,J)=AP(i + (j-1)*j/2)
98 1 equemene
            A(j,I)=A(i,J)
99 1 equemene
         end do
100 1 equemene
      end do
101 1 equemene
!      do j=1,n
102 1 equemene
!         WRITE(*,'(10(1X,F15.6))') (A(i,J),i=1,min(n,5))
103 1 equemene
!      end do
104 1 equemene
105 1 equemene
!      WRITE(*,*) 'Jacpa 1'
106 1 equemene
      call Jacobi(A,n,D,V,Nreal)
107 1 equemene
!      WRITE(*,*) 'Jacpa 2'
108 1 equemene
!      DO i=1,n
109 1 equemene
!         WRITE(*,'(1X,I3,10(1X,F15.6))') i,D(i),(V(j,i),j=1,min(n,5))
110 1 equemene
!      end do
111 1 equemene
      deallocate(a)
112 1 equemene
113 1 equemene
    end SUBROUTINE JacPacked
114 1 equemene
115 1 equemene
116 1 equemene
117 1 equemene
!
118 1 equemene
!============================================================
119 1 equemene
!
120 1 equemene
!     ++  Matrix diagonalization Using jacobi
121 1 equemene
!  Works only for symmetric matrices
122 1 equemene
!     EigvenVectors  : V
123 1 equemene
!     Eigenvalues : D
124 1 equemene
!
125 1 equemene
!============================================================
126 1 equemene
!
127 1 equemene
SUBROUTINE JACOBI(A,N,D,V,Nreal)
128 1 equemene
129 1 equemene
!!!!!!!!!!!!!!!!
130 1 equemene
  !
131 1 equemene
  !     Input:
132 1 equemene
  !     N      :  Dimension of A
133 1 equemene
  !     NReal  : Actual dimensions of A, D and V.
134 1 equemene
  !
135 1 equemene
  !     Input/output:
136 1 equemene
  !     A(N,N) : Matrix to be diagonalized, store in a (Nreal,Nreal) matrix
137 1 equemene
  !              Destroyed in output.
138 1 equemene
  !     Output:
139 1 equemene
  !     V(N,N) : Eigenvectors, stored in V(NReal, NReal)
140 1 equemene
  !     D(N)   : Eigenvalues, stored in D(NReal)
141 1 equemene
  !
142 1 equemene
143 1 equemene
  Use Vartypes
144 1 equemene
145 1 equemene
  IMPLICIT NONE
146 1 equemene
  INTEGER(KINT), parameter :: max_it=500
147 1 equemene
  REAL(KREAL), ALLOCATABLE ::  B(:),Z(:)
148 1 equemene
149 1 equemene
  INTEGER(KINT) :: N,NReal
150 1 equemene
  REAL(KREAL) :: A(NReal,NReal)
151 1 equemene
  REAL(KREAL) :: V(Nreal,Nreal),D(Nreal)
152 1 equemene
153 1 equemene
  INTEGER(KINT) :: I, J,IP, IQ, NROT
154 1 equemene
  REAL(KREAL) :: SM, H, Tresh, G, T, Theta, C, S, Tau
155 1 equemene
156 1 equemene
  allocate(B(N),Z(N))
157 1 equemene
158 1 equemene
  DO  IP=1,N
159 1 equemene
     DO IQ=1,N
160 1 equemene
        V(IP,IQ)=0.
161 1 equemene
     END DO
162 1 equemene
     V(IP,IP)=1.
163 1 equemene
  END DO
164 1 equemene
  DO  IP=1,N
165 1 equemene
     B(IP)=A(IP,IP)
166 1 equemene
     D(IP)=B(IP)
167 1 equemene
     Z(IP)=0.
168 1 equemene
  END DO
169 1 equemene
  NROT=0
170 1 equemene
  DO  I=1,max_it
171 1 equemene
     SM=0.
172 1 equemene
     DO  IP=1,N-1
173 1 equemene
        DO IQ=IP+1,N
174 1 equemene
           SM=SM+ABS(A(IP,IQ))
175 1 equemene
        END DO
176 1 equemene
     END DO
177 1 equemene
     IF(SM.EQ.0.) GOTO 100
178 1 equemene
     IF(I.LT.4)THEN
179 1 equemene
        TRESH=0.2*SM/N**2
180 1 equemene
     ELSE
181 1 equemene
        TRESH=0.
182 1 equemene
     ENDIF
183 1 equemene
     DO  IP=1,N-1
184 1 equemene
        DO  IQ=IP+1,N
185 1 equemene
           G=100.*ABS(A(IP,IQ))
186 1 equemene
           IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP))) &
187 1 equemene
                .AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN
188 1 equemene
              A(IP,IQ)=0.
189 1 equemene
           ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN
190 1 equemene
              H=D(IQ)-D(IP)
191 1 equemene
              IF(ABS(H)+G.EQ.ABS(H))THEN
192 1 equemene
                 T=A(IP,IQ)/H
193 1 equemene
              ELSE
194 1 equemene
                 THETA=0.5*H/A(IP,IQ)
195 1 equemene
                 T=1./(ABS(THETA)+SQRT(1.+THETA**2))
196 1 equemene
                 IF(THETA.LT.0.)T=-T
197 1 equemene
              ENDIF
198 1 equemene
              C=1./SQRT(1+T**2)
199 1 equemene
              S=T*C
200 1 equemene
              TAU=S/(1.+C)
201 1 equemene
              H=T*A(IP,IQ)
202 1 equemene
              Z(IP)=Z(IP)-H
203 1 equemene
              Z(IQ)=Z(IQ)+H
204 1 equemene
              D(IP)=D(IP)-H
205 1 equemene
              D(IQ)=D(IQ)+H
206 1 equemene
              A(IP,IQ)=0.
207 1 equemene
              DO J=1,IP-1
208 1 equemene
                 G=A(J,IP)
209 1 equemene
                 H=A(J,IQ)
210 1 equemene
                 A(J,IP)=G-S*(H+G*TAU)
211 1 equemene
                 A(J,IQ)=H+S*(G-H*TAU)
212 1 equemene
              END DO
213 1 equemene
              DO  J=IP+1,IQ-1
214 1 equemene
                 G=A(IP,J)
215 1 equemene
                 H=A(J,IQ)
216 1 equemene
                 A(IP,J)=G-S*(H+G*TAU)
217 1 equemene
                 A(J,IQ)=H+S*(G-H*TAU)
218 1 equemene
              END DO
219 1 equemene
              DO  J=IQ+1,N
220 1 equemene
                 G=A(IP,J)
221 1 equemene
                 H=A(IQ,J)
222 1 equemene
                 A(IP,J)=G-S*(H+G*TAU)
223 1 equemene
                 A(IQ,J)=H+S*(G-H*TAU)
224 1 equemene
              END DO
225 1 equemene
              DO  J=1,N
226 1 equemene
                 G=V(J,IP)
227 1 equemene
                 H=V(J,IQ)
228 1 equemene
                 V(J,IP)=G-S*(H+G*TAU)
229 1 equemene
                 V(J,IQ)=H+S*(G-H*TAU)
230 1 equemene
              END DO
231 1 equemene
              NROT=NROT+1
232 1 equemene
           ENDIF
233 1 equemene
        END DO
234 1 equemene
     END DO
235 1 equemene
     DO  IP=1,N
236 1 equemene
        B(IP)=B(IP)+Z(IP)
237 1 equemene
        D(IP)=B(IP)
238 1 equemene
        Z(IP)=0.
239 1 equemene
     END DO
240 1 equemene
  END DO
241 1 equemene
  write(6,*) max_it,' iterations should never happen'
242 1 equemene
  STOP
243 1 equemene
100 DEALLOCATE(B,Z)
244 1 equemene
  RETURN
245 1 equemene
END SUBROUTINE JACOBI
246 1 equemene
!
247 1 equemene
!============================================================
248 1 equemene
!c
249 1 equemene
!c ++  Sort Eigenvectors in ascending eigenvalues order
250 1 equemene
!c
251 1 equemene
!c============================================================
252 1 equemene
!c
253 1 equemene
SUBROUTINE trie(nb_niv,ene,psi,nreal)
254 1 equemene
255 1 equemene
  !
256 1 equemene
  ! Input:
257 1 equemene
  !   Nb_niv      :  Dimension of Psi
258 1 equemene
  !   NReal  : Actual dimensions of Psi, Ene
259 1 equemene
  ! Input/output:
260 1 equemene
  !   Psi(N,N) : Eigvenvectors, changed in output. Stored in a (Nreal,Nreal) matrix
261 1 equemene
  !   Ene(N)   : Eigenvalues, changed in output. Stored in Ene(NReal)
262 1 equemene
  !
263 1 equemene
!!!!!!!!!!!!!!!!
264 1 equemene
265 1 equemene
  Use VarTypes
266 1 equemene
  IMPLICIT NONE
267 1 equemene
268 1 equemene
  integer(KINT) :: i,j,k,nb_niv,max_niv, nreal
269 1 equemene
  real(KREAL) :: ene(nreal),psi(nreal,nreal)
270 1 equemene
  real(KREAL) :: a
271 1 equemene
272 1 equemene
273 1 equemene
!!!!!!!!!!!!!!!!
274 1 equemene
275 1 equemene
276 1 equemene
  DO i=1,nb_niv
277 1 equemene
     DO j=i+1,nb_niv
278 1 equemene
        IF (ene(i) .GT. ene(j)) THEN
279 1 equemene
           !              permutation
280 1 equemene
           a=ene(i)
281 1 equemene
           ene(i)=ene(j)
282 1 equemene
           ene(j)=a
283 1 equemene
284 1 equemene
           DO k=1,nb_niv
285 1 equemene
              a=psi(k,i)
286 1 equemene
              psi(k,i)=psi(k,j)
287 1 equemene
              psi(k,j)=a
288 1 equemene
           END DO
289 1 equemene
        END IF
290 1 equemene
     END DO
291 1 equemene
  END DO
292 1 equemene
293 1 equemene
END SUBROUTINE trie
294 1 equemene
295 1 equemene
!============================================================
296 1 equemene
!c
297 1 equemene
!c ++  Sort Eigenvectors in ascending eigenvalues order
298 1 equemene
!c
299 1 equemene
!c============================================================
300 1 equemene
!c
301 1 equemene
SUBROUTINE SortEigenSys(N,Eigval,Eigvec)
302 1 equemene
303 1 equemene
304 1 equemene
  !
305 1 equemene
  ! Input/output:
306 1 equemene
  !   N : dimension of the system
307 1 equemene
  !   EigVec(N,N) : Eigvenvectors, changed in output. Stored in a (N,N) matrix
308 1 equemene
  !   EigVal(N)   : Eigenvalues, changed in output. Stored in a (n) vector
309 1 equemene
  !
310 1 equemene
 ! Process:
311 1 equemene
 ! We use first a ranking, then a working array to reorder the eigenvalues and eigenvectors
312 1 equemene
313 1 equemene
!!!!!!!!!!!!!!!!
314 1 equemene
315 1 equemene
  Use VarTypes
316 1 equemene
  use m_mrgrnk
317 1 equemene
  IMPLICIT NONE
318 1 equemene
319 1 equemene
320 1 equemene
  INTEGER(KINT), INTENT(IN) :: N
321 1 equemene
  REAL(KREAL), INTENT(OUT) :: EigVal(N), Eigvec(N,N)
322 1 equemene
323 1 equemene
  integer(KINT) :: i,j,k
324 1 equemene
325 1 equemene
  INTEGER(KINT), ALLOCATABLE :: Rank(:) !N
326 1 equemene
  REAL(KREAL), ALLOCATABLE :: EigValT(:) !n
327 1 equemene
  REAL(KREAL), ALLOCATABLE :: EigVecT(:,:) !n,n
328 1 equemene
329 1 equemene
!!!!!!!!!!!!!!!!
330 1 equemene
  ALLOCATE(Rank(n),EigValT(n),EigVecT(n,n))
331 1 equemene
  CALL MrgRnk(EigVal,Rank)
332 1 equemene
333 1 equemene
  DO I=1,N
334 1 equemene
     EigValT(I)=EigVal(Rank(I))
335 1 equemene
     EigVecT(I,1:N)=EigVec(Rank(I),1:N)
336 1 equemene
  END DO
337 1 equemene
  EigVal=EigValT
338 1 equemene
  EigVec=EigVecT
339 1 equemene
340 1 equemene
  DEALLOCATE(Rank,EigValT,EigVecT)
341 1 equemene
342 1 equemene
343 1 equemene
END SUBROUTINE SortEigenSys