root / src / Calc_Xprim.f90 @ 2
Historique | Voir | Annoter | Télécharger (6,81 ko)
1 | 1 | equemene | SUBROUTINE Calc_Xprim(nat,x,y,z,Coordinate,NPrim,XPrimitive,XPrimRef) |
---|---|---|---|
2 | 1 | equemene | ! |
3 | 1 | equemene | ! This subroutine uses the description of a list of Coordinates |
4 | 1 | equemene | ! to compute the values of the coordinates for a given geometry. |
5 | 1 | equemene | ! |
6 | 1 | equemene | !!!!!!!!!! |
7 | 1 | equemene | ! Input: |
8 | 1 | equemene | ! Na: INTEGER, Number of atoms |
9 | 1 | equemene | ! x,y,z(Na): REAL, cartesian coordinates of the considered geometry |
10 | 1 | equemene | ! Coordinate (Pointer(ListCoord)): description of the wanted coordiantes |
11 | 1 | equemene | ! NPrim, INTEGER: Number of coordinates to compute |
12 | 1 | equemene | ! |
13 | 1 | equemene | ! Optional: XPrimRef(NPrim) REAL: array that contains coordinates values for |
14 | 1 | equemene | ! a former geometry. Useful for Dihedral angles evolution... |
15 | 1 | equemene | |
16 | 1 | equemene | !!!!!!!!!!! |
17 | 1 | equemene | ! Output: |
18 | 1 | equemene | ! XPrimimite(NPrim) REAL: array that will contain the values of the coordinates |
19 | 1 | equemene | ! |
20 | 1 | equemene | !!!!!!!!! |
21 | 1 | equemene | |
22 | 1 | equemene | Use VarTypes |
23 | 1 | equemene | Use Io_module |
24 | 1 | equemene | Use Path_module, only : pi |
25 | 1 | equemene | |
26 | 1 | equemene | IMPLICIT NONE |
27 | 1 | equemene | |
28 | 1 | equemene | Type (ListCoord), POINTER :: Coordinate |
29 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: Nat,NPrim |
30 | 1 | equemene | REAL(KREAL), INTENT(IN) :: x(Nat), y(Nat), z(Nat) |
31 | 1 | equemene | REAL(KREAL), INTENT(IN), OPTIONAL :: XPrimRef(NPrim) |
32 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: XPrimitive(NPrim) |
33 | 1 | equemene | |
34 | 1 | equemene | |
35 | 1 | equemene | Type (ListCoord), POINTER :: ScanCoord |
36 | 1 | equemene | |
37 | 1 | equemene | real(KREAL) :: vx,vy,vz,dist, Norm |
38 | 1 | equemene | real(KREAL) :: vx1,vy1,vz1,norm1 |
39 | 1 | equemene | real(KREAL) :: vx2,vy2,vz2,norm2 |
40 | 1 | equemene | real(KREAL) :: vx3,vy3,vz3,norm3 |
41 | 1 | equemene | real(KREAL) :: vx4,vy4,vz4,norm4 |
42 | 1 | equemene | real(KREAL) :: vx5,vy5,vz5,norm5 |
43 | 1 | equemene | real(KREAL) :: val,val_d, Q, T |
44 | 1 | equemene | |
45 | 1 | equemene | INTEGER(KINT) :: I,J, n1,n2,n3,n4 |
46 | 1 | equemene | |
47 | 1 | equemene | REAL(KREAL) :: sAngleIatIKat, sAngleIIatLat |
48 | 1 | equemene | REAL(KREAL) :: DiheTmp |
49 | 1 | equemene | |
50 | 1 | equemene | LOGICAL :: debug, debugPFL |
51 | 1 | equemene | |
52 | 1 | equemene | INTERFACE |
53 | 1 | equemene | function valid(string) result (isValid) |
54 | 1 | equemene | CHARACTER(*), intent(in) :: string |
55 | 1 | equemene | logical :: isValid |
56 | 1 | equemene | END function VALID |
57 | 1 | equemene | |
58 | 1 | equemene | FUNCTION angle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
59 | 1 | equemene | use Path_module, only : Pi,KINT, KREAL |
60 | 1 | equemene | real(KREAL) :: v1x,v1y,v1z,norm1 |
61 | 1 | equemene | real(KREAL) :: v2x,v2y,v2z,norm2 |
62 | 1 | equemene | real(KREAL) :: angle |
63 | 1 | equemene | END FUNCTION ANGLE |
64 | 1 | equemene | |
65 | 1 | equemene | FUNCTION SinAngle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
66 | 1 | equemene | use Path_module, only : Pi,KINT, KREAL |
67 | 1 | equemene | real(KREAL) :: v1x,v1y,v1z,norm1 |
68 | 1 | equemene | real(KREAL) :: v2x,v2y,v2z,norm2 |
69 | 1 | equemene | real(KREAL) :: SinAngle |
70 | 1 | equemene | END FUNCTION SINANGLE |
71 | 1 | equemene | |
72 | 1 | equemene | |
73 | 1 | equemene | FUNCTION angle_d(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2,v3x,v3y,v3z,norm3) |
74 | 1 | equemene | use Path_module, only : Pi,KINT, KREAL |
75 | 1 | equemene | real(KREAL) :: v1x,v1y,v1z,norm1 |
76 | 1 | equemene | real(KREAL) :: v2x,v2y,v2z,norm2 |
77 | 1 | equemene | real(KREAL) :: v3x,v3y,v3z,norm3 |
78 | 1 | equemene | real(KREAL) :: angle_d,ca,sa |
79 | 1 | equemene | END FUNCTION ANGLE_D |
80 | 1 | equemene | |
81 | 1 | equemene | END INTERFACE |
82 | 1 | equemene | |
83 | 1 | equemene | |
84 | 1 | equemene | debug=valid("Calc_Xprim") |
85 | 1 | equemene | debugPFL=valid("BakerPFL") |
86 | 1 | equemene | if (debug) WRITE(*,*) "============= Entering Cal_XPrim ==============" |
87 | 1 | equemene | |
88 | 1 | equemene | |
89 | 1 | equemene | IF (debug) THEN |
90 | 1 | equemene | WRITE(*,*) "DBG Calc_Xprim, geom" |
91 | 1 | equemene | DO I=1,Nat |
92 | 1 | equemene | WRITE(*,'(1X,I5,3(1X,F15.3))') I,X(I),y(i),z(i) |
93 | 1 | equemene | END DO |
94 | 1 | equemene | WRITE(*,*) "XPrimRef" |
95 | 1 | equemene | WRITE(*,'(15(1X,F10.6))') XPrimRef |
96 | 1 | equemene | END IF |
97 | 1 | equemene | |
98 | 1 | equemene | |
99 | 1 | equemene | ! WRITE(*,*) "Coordinate:",associated(Coordinate) |
100 | 1 | equemene | |
101 | 1 | equemene | ScanCoord=>Coordinate |
102 | 1 | equemene | |
103 | 1 | equemene | ! WRITE(*,*) "ScanCoord:",associated(ScanCoord),ScanCoord%Type |
104 | 1 | equemene | |
105 | 1 | equemene | ! WRITE(*,*) "coucou" |
106 | 1 | equemene | I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
107 | 1 | equemene | DO WHILE (Associated(ScanCoord%next)) |
108 | 1 | equemene | I=I+1 |
109 | 1 | equemene | ! WRITE(*,*) i |
110 | 1 | equemene | SELECT CASE (ScanCoord%Type) |
111 | 1 | equemene | CASE ('BOND') |
112 | 1 | equemene | Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
113 | 1 | equemene | Xprimitive(I) = Norm2 |
114 | 1 | equemene | CASE ('ANGLE') |
115 | 1 | equemene | Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx1,vy1,vz1,Norm1) |
116 | 1 | equemene | Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
117 | 1 | equemene | Xprimitive(I) = angle(vx1,vy1,vz1,Norm1,vx2,vy2,vz2,Norm2)*Pi/180. |
118 | 1 | equemene | CASE ('DIHEDRAL') |
119 | 1 | equemene | Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx1,vy1,vz1,Norm1) |
120 | 1 | equemene | Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx2,vy2,vz2,Norm2) |
121 | 1 | equemene | Call vecteur(ScanCoord%At3,ScanCoord%At4,x,y,z,vx3,vy3,vz3,Norm3) |
122 | 1 | equemene | Call produit_vect(vx1,vy1,vz1,norm1,vx2,vy2,vz2,norm2, & |
123 | 1 | equemene | vx4,vy4,vz4,norm4) |
124 | 1 | equemene | Call produit_vect(vx3,vy3,vz3,norm3,vx2,vy2,vz2,norm2, & |
125 | 1 | equemene | vx5,vy5,vz5,norm5) |
126 | 1 | equemene | |
127 | 1 | equemene | DiheTmp= angle_d(vx4,vy4,vz4,norm4,vx5,vy5,vz5,norm5, & |
128 | 1 | equemene | vx2,vy2,vz2,norm2) |
129 | 1 | equemene | Xprimitive(I) = DiheTmp*Pi/180. |
130 | 1 | equemene | ! PFL 15th March 2008 -> |
131 | 1 | equemene | ! I think that the test on changes less than Pi should be enough |
132 | 1 | equemene | !! We treat large dihedral angles differently as +180=-180 mathematically and physically |
133 | 1 | equemene | !! but this causes lots of troubles when converting baker to cart. |
134 | 1 | equemene | !! So we ensure that large dihedral angles always have the same sign |
135 | 1 | equemene | ! if (abs(ScanCoord%SignDihedral).NE.1) THEN |
136 | 1 | equemene | ! ScanCoord%SignDihedral=Int(Sign(1.D0,DiheTmp)) |
137 | 1 | equemene | ! ELSE |
138 | 1 | equemene | ! If ((abs(DiheTmp).GE.170.D0).AND.(Sign(1.,DiheTmp)*ScanCoord%SignDihedral<0)) THEN |
139 | 1 | equemene | ! Xprimitive(I) = DiheTmp*Pi/180.+ ScanCoord%SignDihedral*2.*Pi |
140 | 1 | equemene | ! END IF |
141 | 1 | equemene | ! END IF |
142 | 1 | equemene | !!!! <- PFL 15th March 2008 |
143 | 1 | equemene | ! Another test... will all this be consistent ??? |
144 | 1 | equemene | ! We want the shortest path, so we check that the change in dihedral angles is less than Pi: |
145 | 1 | equemene | IF (Present(XPrimRef)) THEN |
146 | 1 | equemene | IF (abs(Xprimitive(I)-XPrimRef(I)).GE.Pi) THEN |
147 | 1 | equemene | if (debug) THEN |
148 | 1 | equemene | WRITE(*,*) "Pb dihedral, i,Xprimivite,XPrimref=",i,XPrimitive(I),XPrimRef(I) |
149 | 1 | equemene | WRITE(*,*) "In deg Xprimivite,XPrimref=",XPrimitive(I)*180./Pi,XPrimRef(I)*180/Pi |
150 | 1 | equemene | END IF |
151 | 1 | equemene | if ((Xprimitive(I)-XPrimRef(I)).GE.Pi) THEN |
152 | 1 | equemene | Xprimitive(I)=Xprimitive(I)-2.d0*Pi |
153 | 1 | equemene | ELSE |
154 | 1 | equemene | Xprimitive(I)=Xprimitive(I)+2.d0*Pi |
155 | 1 | equemene | END IF |
156 | 1 | equemene | END IF |
157 | 1 | equemene | if (debug) WRITE(*,*) " New Xprimivite",XPrimitive(I),XPrimitive(I)*180./Pi |
158 | 1 | equemene | END IF |
159 | 1 | equemene | END SELECT |
160 | 1 | equemene | ScanCoord => ScanCoord%next |
161 | 1 | equemene | END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
162 | 1 | equemene | |
163 | 1 | equemene | |
164 | 1 | equemene | |
165 | 1 | equemene | IF (debug) THEN |
166 | 1 | equemene | WRITE(*,*) "DBG Calc_Xprim Values" |
167 | 1 | equemene | |
168 | 1 | equemene | ScanCoord=>Coordinate |
169 | 1 | equemene | I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
170 | 1 | equemene | DO WHILE (Associated(ScanCoord%next)) |
171 | 1 | equemene | I=I+1 |
172 | 1 | equemene | SELECT CASE (ScanCoord%Type) |
173 | 1 | equemene | CASE ('BOND') |
174 | 1 | equemene | WRITE(*,'(1X,I3,":",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1,ScanCoord%At2,Xprimitive(I) |
175 | 1 | equemene | CASE ('ANGLE') |
176 | 1 | equemene | WRITE(*,'(1X,I3,":",I5," - ",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1, & |
177 | 1 | equemene | ScanCoord%At2, ScanCoord%At3,Xprimitive(I)*180./Pi |
178 | 1 | equemene | CASE ('DIHEDRAL') |
179 | 1 | equemene | WRITE(*,'(1X,I3,":",I5," - ",I5," - ",I5," - ",I5," = ",F15.6)') I,ScanCoord%At1,& |
180 | 1 | equemene | ScanCoord%At2, ScanCoord%At3,ScanCoord%At4,Xprimitive(I)*180./Pi |
181 | 1 | equemene | END SELECT |
182 | 1 | equemene | ScanCoord => ScanCoord%next |
183 | 1 | equemene | END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
184 | 1 | equemene | END IF |
185 | 1 | equemene | if (debug) WRITE(*,*) "============= Cal_XPrim OVER ==============" |
186 | 1 | equemene | END SUBROUTINE Calc_Xprim |