Statistiques
| Révision :

root / src / lapack / double / dormqr.f @ 1

Historique | Voir | Annoter | Télécharger (7,41 ko)

1 1 equemene
      SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
2 1 equemene
     $                   WORK, LWORK, INFO )
3 1 equemene
*
4 1 equemene
*  -- LAPACK routine (version 3.2) --
5 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 1 equemene
*     November 2006
8 1 equemene
*
9 1 equemene
*     .. Scalar Arguments ..
10 1 equemene
      CHARACTER          SIDE, TRANS
11 1 equemene
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
12 1 equemene
*     ..
13 1 equemene
*     .. Array Arguments ..
14 1 equemene
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
15 1 equemene
*     ..
16 1 equemene
*
17 1 equemene
*  Purpose
18 1 equemene
*  =======
19 1 equemene
*
20 1 equemene
*  DORMQR overwrites the general real M-by-N matrix C with
21 1 equemene
*
22 1 equemene
*                  SIDE = 'L'     SIDE = 'R'
23 1 equemene
*  TRANS = 'N':      Q * C          C * Q
24 1 equemene
*  TRANS = 'T':      Q**T * C       C * Q**T
25 1 equemene
*
26 1 equemene
*  where Q is a real orthogonal matrix defined as the product of k
27 1 equemene
*  elementary reflectors
28 1 equemene
*
29 1 equemene
*        Q = H(1) H(2) . . . H(k)
30 1 equemene
*
31 1 equemene
*  as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
32 1 equemene
*  if SIDE = 'R'.
33 1 equemene
*
34 1 equemene
*  Arguments
35 1 equemene
*  =========
36 1 equemene
*
37 1 equemene
*  SIDE    (input) CHARACTER*1
38 1 equemene
*          = 'L': apply Q or Q**T from the Left;
39 1 equemene
*          = 'R': apply Q or Q**T from the Right.
40 1 equemene
*
41 1 equemene
*  TRANS   (input) CHARACTER*1
42 1 equemene
*          = 'N':  No transpose, apply Q;
43 1 equemene
*          = 'T':  Transpose, apply Q**T.
44 1 equemene
*
45 1 equemene
*  M       (input) INTEGER
46 1 equemene
*          The number of rows of the matrix C. M >= 0.
47 1 equemene
*
48 1 equemene
*  N       (input) INTEGER
49 1 equemene
*          The number of columns of the matrix C. N >= 0.
50 1 equemene
*
51 1 equemene
*  K       (input) INTEGER
52 1 equemene
*          The number of elementary reflectors whose product defines
53 1 equemene
*          the matrix Q.
54 1 equemene
*          If SIDE = 'L', M >= K >= 0;
55 1 equemene
*          if SIDE = 'R', N >= K >= 0.
56 1 equemene
*
57 1 equemene
*  A       (input) DOUBLE PRECISION array, dimension (LDA,K)
58 1 equemene
*          The i-th column must contain the vector which defines the
59 1 equemene
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
60 1 equemene
*          DGEQRF in the first k columns of its array argument A.
61 1 equemene
*          A is modified by the routine but restored on exit.
62 1 equemene
*
63 1 equemene
*  LDA     (input) INTEGER
64 1 equemene
*          The leading dimension of the array A.
65 1 equemene
*          If SIDE = 'L', LDA >= max(1,M);
66 1 equemene
*          if SIDE = 'R', LDA >= max(1,N).
67 1 equemene
*
68 1 equemene
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
69 1 equemene
*          TAU(i) must contain the scalar factor of the elementary
70 1 equemene
*          reflector H(i), as returned by DGEQRF.
71 1 equemene
*
72 1 equemene
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
73 1 equemene
*          On entry, the M-by-N matrix C.
74 1 equemene
*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
75 1 equemene
*
76 1 equemene
*  LDC     (input) INTEGER
77 1 equemene
*          The leading dimension of the array C. LDC >= max(1,M).
78 1 equemene
*
79 1 equemene
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
80 1 equemene
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
81 1 equemene
*
82 1 equemene
*  LWORK   (input) INTEGER
83 1 equemene
*          The dimension of the array WORK.
84 1 equemene
*          If SIDE = 'L', LWORK >= max(1,N);
85 1 equemene
*          if SIDE = 'R', LWORK >= max(1,M).
86 1 equemene
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
87 1 equemene
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
88 1 equemene
*          blocksize.
89 1 equemene
*
90 1 equemene
*          If LWORK = -1, then a workspace query is assumed; the routine
91 1 equemene
*          only calculates the optimal size of the WORK array, returns
92 1 equemene
*          this value as the first entry of the WORK array, and no error
93 1 equemene
*          message related to LWORK is issued by XERBLA.
94 1 equemene
*
95 1 equemene
*  INFO    (output) INTEGER
96 1 equemene
*          = 0:  successful exit
97 1 equemene
*          < 0:  if INFO = -i, the i-th argument had an illegal value
98 1 equemene
*
99 1 equemene
*  =====================================================================
100 1 equemene
*
101 1 equemene
*     .. Parameters ..
102 1 equemene
      INTEGER            NBMAX, LDT
103 1 equemene
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
104 1 equemene
*     ..
105 1 equemene
*     .. Local Scalars ..
106 1 equemene
      LOGICAL            LEFT, LQUERY, NOTRAN
107 1 equemene
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
108 1 equemene
     $                   LWKOPT, MI, NB, NBMIN, NI, NQ, NW
109 1 equemene
*     ..
110 1 equemene
*     .. Local Arrays ..
111 1 equemene
      DOUBLE PRECISION   T( LDT, NBMAX )
112 1 equemene
*     ..
113 1 equemene
*     .. External Functions ..
114 1 equemene
      LOGICAL            LSAME
115 1 equemene
      INTEGER            ILAENV
116 1 equemene
      EXTERNAL           LSAME, ILAENV
117 1 equemene
*     ..
118 1 equemene
*     .. External Subroutines ..
119 1 equemene
      EXTERNAL           DLARFB, DLARFT, DORM2R, XERBLA
120 1 equemene
*     ..
121 1 equemene
*     .. Intrinsic Functions ..
122 1 equemene
      INTRINSIC          MAX, MIN
123 1 equemene
*     ..
124 1 equemene
*     .. Executable Statements ..
125 1 equemene
*
126 1 equemene
*     Test the input arguments
127 1 equemene
*
128 1 equemene
      INFO = 0
129 1 equemene
      LEFT = LSAME( SIDE, 'L' )
130 1 equemene
      NOTRAN = LSAME( TRANS, 'N' )
131 1 equemene
      LQUERY = ( LWORK.EQ.-1 )
132 1 equemene
*
133 1 equemene
*     NQ is the order of Q and NW is the minimum dimension of WORK
134 1 equemene
*
135 1 equemene
      IF( LEFT ) THEN
136 1 equemene
         NQ = M
137 1 equemene
         NW = N
138 1 equemene
      ELSE
139 1 equemene
         NQ = N
140 1 equemene
         NW = M
141 1 equemene
      END IF
142 1 equemene
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
143 1 equemene
         INFO = -1
144 1 equemene
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
145 1 equemene
         INFO = -2
146 1 equemene
      ELSE IF( M.LT.0 ) THEN
147 1 equemene
         INFO = -3
148 1 equemene
      ELSE IF( N.LT.0 ) THEN
149 1 equemene
         INFO = -4
150 1 equemene
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
151 1 equemene
         INFO = -5
152 1 equemene
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
153 1 equemene
         INFO = -7
154 1 equemene
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
155 1 equemene
         INFO = -10
156 1 equemene
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
157 1 equemene
         INFO = -12
158 1 equemene
      END IF
159 1 equemene
*
160 1 equemene
      IF( INFO.EQ.0 ) THEN
161 1 equemene
*
162 1 equemene
*        Determine the block size.  NB may be at most NBMAX, where NBMAX
163 1 equemene
*        is used to define the local array T.
164 1 equemene
*
165 1 equemene
         NB = MIN( NBMAX, ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N, K,
166 1 equemene
     $        -1 ) )
167 1 equemene
         LWKOPT = MAX( 1, NW )*NB
168 1 equemene
         WORK( 1 ) = LWKOPT
169 1 equemene
      END IF
170 1 equemene
*
171 1 equemene
      IF( INFO.NE.0 ) THEN
172 1 equemene
         CALL XERBLA( 'DORMQR', -INFO )
173 1 equemene
         RETURN
174 1 equemene
      ELSE IF( LQUERY ) THEN
175 1 equemene
         RETURN
176 1 equemene
      END IF
177 1 equemene
*
178 1 equemene
*     Quick return if possible
179 1 equemene
*
180 1 equemene
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
181 1 equemene
         WORK( 1 ) = 1
182 1 equemene
         RETURN
183 1 equemene
      END IF
184 1 equemene
*
185 1 equemene
      NBMIN = 2
186 1 equemene
      LDWORK = NW
187 1 equemene
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
188 1 equemene
         IWS = NW*NB
189 1 equemene
         IF( LWORK.LT.IWS ) THEN
190 1 equemene
            NB = LWORK / LDWORK
191 1 equemene
            NBMIN = MAX( 2, ILAENV( 2, 'DORMQR', SIDE // TRANS, M, N, K,
192 1 equemene
     $              -1 ) )
193 1 equemene
         END IF
194 1 equemene
      ELSE
195 1 equemene
         IWS = NW
196 1 equemene
      END IF
197 1 equemene
*
198 1 equemene
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
199 1 equemene
*
200 1 equemene
*        Use unblocked code
201 1 equemene
*
202 1 equemene
         CALL DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
203 1 equemene
     $                IINFO )
204 1 equemene
      ELSE
205 1 equemene
*
206 1 equemene
*        Use blocked code
207 1 equemene
*
208 1 equemene
         IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
209 1 equemene
     $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
210 1 equemene
            I1 = 1
211 1 equemene
            I2 = K
212 1 equemene
            I3 = NB
213 1 equemene
         ELSE
214 1 equemene
            I1 = ( ( K-1 ) / NB )*NB + 1
215 1 equemene
            I2 = 1
216 1 equemene
            I3 = -NB
217 1 equemene
         END IF
218 1 equemene
*
219 1 equemene
         IF( LEFT ) THEN
220 1 equemene
            NI = N
221 1 equemene
            JC = 1
222 1 equemene
         ELSE
223 1 equemene
            MI = M
224 1 equemene
            IC = 1
225 1 equemene
         END IF
226 1 equemene
*
227 1 equemene
         DO 10 I = I1, I2, I3
228 1 equemene
            IB = MIN( NB, K-I+1 )
229 1 equemene
*
230 1 equemene
*           Form the triangular factor of the block reflector
231 1 equemene
*           H = H(i) H(i+1) . . . H(i+ib-1)
232 1 equemene
*
233 1 equemene
            CALL DLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ),
234 1 equemene
     $                   LDA, TAU( I ), T, LDT )
235 1 equemene
            IF( LEFT ) THEN
236 1 equemene
*
237 1 equemene
*              H or H' is applied to C(i:m,1:n)
238 1 equemene
*
239 1 equemene
               MI = M - I + 1
240 1 equemene
               IC = I
241 1 equemene
            ELSE
242 1 equemene
*
243 1 equemene
*              H or H' is applied to C(1:m,i:n)
244 1 equemene
*
245 1 equemene
               NI = N - I + 1
246 1 equemene
               JC = I
247 1 equemene
            END IF
248 1 equemene
*
249 1 equemene
*           Apply H or H'
250 1 equemene
*
251 1 equemene
            CALL DLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI,
252 1 equemene
     $                   IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC,
253 1 equemene
     $                   WORK, LDWORK )
254 1 equemene
   10    CONTINUE
255 1 equemene
      END IF
256 1 equemene
      WORK( 1 ) = LWKOPT
257 1 equemene
      RETURN
258 1 equemene
*
259 1 equemene
*     End of DORMQR
260 1 equemene
*
261 1 equemene
      END