root / src / lapack / double / dlatrz.f @ 1
Historique | Voir | Annoter | Télécharger (3,83 ko)
1 | 1 | equemene | SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK routine (version 3.2.2) -- |
4 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 | 1 | equemene | * June 2010 |
7 | 1 | equemene | * |
8 | 1 | equemene | * .. Scalar Arguments .. |
9 | 1 | equemene | INTEGER L, LDA, M, N |
10 | 1 | equemene | * .. |
11 | 1 | equemene | * .. Array Arguments .. |
12 | 1 | equemene | DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) |
13 | 1 | equemene | * .. |
14 | 1 | equemene | * |
15 | 1 | equemene | * Purpose |
16 | 1 | equemene | * ======= |
17 | 1 | equemene | * |
18 | 1 | equemene | * DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix |
19 | 1 | equemene | * [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means |
20 | 1 | equemene | * of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal |
21 | 1 | equemene | * matrix and, R and A1 are M-by-M upper triangular matrices. |
22 | 1 | equemene | * |
23 | 1 | equemene | * Arguments |
24 | 1 | equemene | * ========= |
25 | 1 | equemene | * |
26 | 1 | equemene | * M (input) INTEGER |
27 | 1 | equemene | * The number of rows of the matrix A. M >= 0. |
28 | 1 | equemene | * |
29 | 1 | equemene | * N (input) INTEGER |
30 | 1 | equemene | * The number of columns of the matrix A. N >= 0. |
31 | 1 | equemene | * |
32 | 1 | equemene | * L (input) INTEGER |
33 | 1 | equemene | * The number of columns of the matrix A containing the |
34 | 1 | equemene | * meaningful part of the Householder vectors. N-M >= L >= 0. |
35 | 1 | equemene | * |
36 | 1 | equemene | * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) |
37 | 1 | equemene | * On entry, the leading M-by-N upper trapezoidal part of the |
38 | 1 | equemene | * array A must contain the matrix to be factorized. |
39 | 1 | equemene | * On exit, the leading M-by-M upper triangular part of A |
40 | 1 | equemene | * contains the upper triangular matrix R, and elements N-L+1 to |
41 | 1 | equemene | * N of the first M rows of A, with the array TAU, represent the |
42 | 1 | equemene | * orthogonal matrix Z as a product of M elementary reflectors. |
43 | 1 | equemene | * |
44 | 1 | equemene | * LDA (input) INTEGER |
45 | 1 | equemene | * The leading dimension of the array A. LDA >= max(1,M). |
46 | 1 | equemene | * |
47 | 1 | equemene | * TAU (output) DOUBLE PRECISION array, dimension (M) |
48 | 1 | equemene | * The scalar factors of the elementary reflectors. |
49 | 1 | equemene | * |
50 | 1 | equemene | * WORK (workspace) DOUBLE PRECISION array, dimension (M) |
51 | 1 | equemene | * |
52 | 1 | equemene | * Further Details |
53 | 1 | equemene | * =============== |
54 | 1 | equemene | * |
55 | 1 | equemene | * Based on contributions by |
56 | 1 | equemene | * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA |
57 | 1 | equemene | * |
58 | 1 | equemene | * The factorization is obtained by Householder's method. The kth |
59 | 1 | equemene | * transformation matrix, Z( k ), which is used to introduce zeros into |
60 | 1 | equemene | * the ( m - k + 1 )th row of A, is given in the form |
61 | 1 | equemene | * |
62 | 1 | equemene | * Z( k ) = ( I 0 ), |
63 | 1 | equemene | * ( 0 T( k ) ) |
64 | 1 | equemene | * |
65 | 1 | equemene | * where |
66 | 1 | equemene | * |
67 | 1 | equemene | * T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), |
68 | 1 | equemene | * ( 0 ) |
69 | 1 | equemene | * ( z( k ) ) |
70 | 1 | equemene | * |
71 | 1 | equemene | * tau is a scalar and z( k ) is an l element vector. tau and z( k ) |
72 | 1 | equemene | * are chosen to annihilate the elements of the kth row of A2. |
73 | 1 | equemene | * |
74 | 1 | equemene | * The scalar tau is returned in the kth element of TAU and the vector |
75 | 1 | equemene | * u( k ) in the kth row of A2, such that the elements of z( k ) are |
76 | 1 | equemene | * in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in |
77 | 1 | equemene | * the upper triangular part of A1. |
78 | 1 | equemene | * |
79 | 1 | equemene | * Z is given by |
80 | 1 | equemene | * |
81 | 1 | equemene | * Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). |
82 | 1 | equemene | * |
83 | 1 | equemene | * ===================================================================== |
84 | 1 | equemene | * |
85 | 1 | equemene | * .. Parameters .. |
86 | 1 | equemene | DOUBLE PRECISION ZERO |
87 | 1 | equemene | PARAMETER ( ZERO = 0.0D+0 ) |
88 | 1 | equemene | * .. |
89 | 1 | equemene | * .. Local Scalars .. |
90 | 1 | equemene | INTEGER I |
91 | 1 | equemene | * .. |
92 | 1 | equemene | * .. External Subroutines .. |
93 | 1 | equemene | EXTERNAL DLARFG, DLARZ |
94 | 1 | equemene | * .. |
95 | 1 | equemene | * .. Executable Statements .. |
96 | 1 | equemene | * |
97 | 1 | equemene | * Test the input arguments |
98 | 1 | equemene | * |
99 | 1 | equemene | * Quick return if possible |
100 | 1 | equemene | * |
101 | 1 | equemene | IF( M.EQ.0 ) THEN |
102 | 1 | equemene | RETURN |
103 | 1 | equemene | ELSE IF( M.EQ.N ) THEN |
104 | 1 | equemene | DO 10 I = 1, N |
105 | 1 | equemene | TAU( I ) = ZERO |
106 | 1 | equemene | 10 CONTINUE |
107 | 1 | equemene | RETURN |
108 | 1 | equemene | END IF |
109 | 1 | equemene | * |
110 | 1 | equemene | DO 20 I = M, 1, -1 |
111 | 1 | equemene | * |
112 | 1 | equemene | * Generate elementary reflector H(i) to annihilate |
113 | 1 | equemene | * [ A(i,i) A(i,n-l+1:n) ] |
114 | 1 | equemene | * |
115 | 1 | equemene | CALL DLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) ) |
116 | 1 | equemene | * |
117 | 1 | equemene | * Apply H(i) to A(1:i-1,i:n) from the right |
118 | 1 | equemene | * |
119 | 1 | equemene | CALL DLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA, |
120 | 1 | equemene | $ TAU( I ), A( 1, I ), LDA, WORK ) |
121 | 1 | equemene | * |
122 | 1 | equemene | 20 CONTINUE |
123 | 1 | equemene | * |
124 | 1 | equemene | RETURN |
125 | 1 | equemene | * |
126 | 1 | equemene | * End of DLATRZ |
127 | 1 | equemene | * |
128 | 1 | equemene | END |