root / src / lapack / double / dlasq1.f @ 1
Historique | Voir | Annoter | Télécharger (4,7 ko)
1 | 1 | equemene | SUBROUTINE DLASQ1( N, D, E, WORK, INFO ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK routine (version 3.2) -- |
4 | 1 | equemene | * |
5 | 1 | equemene | * -- Contributed by Osni Marques of the Lawrence Berkeley National -- |
6 | 1 | equemene | * -- Laboratory and Beresford Parlett of the Univ. of California at -- |
7 | 1 | equemene | * -- Berkeley -- |
8 | 1 | equemene | * -- November 2008 -- |
9 | 1 | equemene | * |
10 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
11 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
12 | 1 | equemene | * |
13 | 1 | equemene | * .. Scalar Arguments .. |
14 | 1 | equemene | INTEGER INFO, N |
15 | 1 | equemene | * .. |
16 | 1 | equemene | * .. Array Arguments .. |
17 | 1 | equemene | DOUBLE PRECISION D( * ), E( * ), WORK( * ) |
18 | 1 | equemene | * .. |
19 | 1 | equemene | * |
20 | 1 | equemene | * Purpose |
21 | 1 | equemene | * ======= |
22 | 1 | equemene | * |
23 | 1 | equemene | * DLASQ1 computes the singular values of a real N-by-N bidiagonal |
24 | 1 | equemene | * matrix with diagonal D and off-diagonal E. The singular values |
25 | 1 | equemene | * are computed to high relative accuracy, in the absence of |
26 | 1 | equemene | * denormalization, underflow and overflow. The algorithm was first |
27 | 1 | equemene | * presented in |
28 | 1 | equemene | * |
29 | 1 | equemene | * "Accurate singular values and differential qd algorithms" by K. V. |
30 | 1 | equemene | * Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, |
31 | 1 | equemene | * 1994, |
32 | 1 | equemene | * |
33 | 1 | equemene | * and the present implementation is described in "An implementation of |
34 | 1 | equemene | * the dqds Algorithm (Positive Case)", LAPACK Working Note. |
35 | 1 | equemene | * |
36 | 1 | equemene | * Arguments |
37 | 1 | equemene | * ========= |
38 | 1 | equemene | * |
39 | 1 | equemene | * N (input) INTEGER |
40 | 1 | equemene | * The number of rows and columns in the matrix. N >= 0. |
41 | 1 | equemene | * |
42 | 1 | equemene | * D (input/output) DOUBLE PRECISION array, dimension (N) |
43 | 1 | equemene | * On entry, D contains the diagonal elements of the |
44 | 1 | equemene | * bidiagonal matrix whose SVD is desired. On normal exit, |
45 | 1 | equemene | * D contains the singular values in decreasing order. |
46 | 1 | equemene | * |
47 | 1 | equemene | * E (input/output) DOUBLE PRECISION array, dimension (N) |
48 | 1 | equemene | * On entry, elements E(1:N-1) contain the off-diagonal elements |
49 | 1 | equemene | * of the bidiagonal matrix whose SVD is desired. |
50 | 1 | equemene | * On exit, E is overwritten. |
51 | 1 | equemene | * |
52 | 1 | equemene | * WORK (workspace) DOUBLE PRECISION array, dimension (4*N) |
53 | 1 | equemene | * |
54 | 1 | equemene | * INFO (output) INTEGER |
55 | 1 | equemene | * = 0: successful exit |
56 | 1 | equemene | * < 0: if INFO = -i, the i-th argument had an illegal value |
57 | 1 | equemene | * > 0: the algorithm failed |
58 | 1 | equemene | * = 1, a split was marked by a positive value in E |
59 | 1 | equemene | * = 2, current block of Z not diagonalized after 30*N |
60 | 1 | equemene | * iterations (in inner while loop) |
61 | 1 | equemene | * = 3, termination criterion of outer while loop not met |
62 | 1 | equemene | * (program created more than N unreduced blocks) |
63 | 1 | equemene | * |
64 | 1 | equemene | * ===================================================================== |
65 | 1 | equemene | * |
66 | 1 | equemene | * .. Parameters .. |
67 | 1 | equemene | DOUBLE PRECISION ZERO |
68 | 1 | equemene | PARAMETER ( ZERO = 0.0D0 ) |
69 | 1 | equemene | * .. |
70 | 1 | equemene | * .. Local Scalars .. |
71 | 1 | equemene | INTEGER I, IINFO |
72 | 1 | equemene | DOUBLE PRECISION EPS, SCALE, SAFMIN, SIGMN, SIGMX |
73 | 1 | equemene | * .. |
74 | 1 | equemene | * .. External Subroutines .. |
75 | 1 | equemene | EXTERNAL DCOPY, DLAS2, DLASCL, DLASQ2, DLASRT, XERBLA |
76 | 1 | equemene | * .. |
77 | 1 | equemene | * .. External Functions .. |
78 | 1 | equemene | DOUBLE PRECISION DLAMCH |
79 | 1 | equemene | EXTERNAL DLAMCH |
80 | 1 | equemene | * .. |
81 | 1 | equemene | * .. Intrinsic Functions .. |
82 | 1 | equemene | INTRINSIC ABS, MAX, SQRT |
83 | 1 | equemene | * .. |
84 | 1 | equemene | * .. Executable Statements .. |
85 | 1 | equemene | * |
86 | 1 | equemene | INFO = 0 |
87 | 1 | equemene | IF( N.LT.0 ) THEN |
88 | 1 | equemene | INFO = -2 |
89 | 1 | equemene | CALL XERBLA( 'DLASQ1', -INFO ) |
90 | 1 | equemene | RETURN |
91 | 1 | equemene | ELSE IF( N.EQ.0 ) THEN |
92 | 1 | equemene | RETURN |
93 | 1 | equemene | ELSE IF( N.EQ.1 ) THEN |
94 | 1 | equemene | D( 1 ) = ABS( D( 1 ) ) |
95 | 1 | equemene | RETURN |
96 | 1 | equemene | ELSE IF( N.EQ.2 ) THEN |
97 | 1 | equemene | CALL DLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX ) |
98 | 1 | equemene | D( 1 ) = SIGMX |
99 | 1 | equemene | D( 2 ) = SIGMN |
100 | 1 | equemene | RETURN |
101 | 1 | equemene | END IF |
102 | 1 | equemene | * |
103 | 1 | equemene | * Estimate the largest singular value. |
104 | 1 | equemene | * |
105 | 1 | equemene | SIGMX = ZERO |
106 | 1 | equemene | DO 10 I = 1, N - 1 |
107 | 1 | equemene | D( I ) = ABS( D( I ) ) |
108 | 1 | equemene | SIGMX = MAX( SIGMX, ABS( E( I ) ) ) |
109 | 1 | equemene | 10 CONTINUE |
110 | 1 | equemene | D( N ) = ABS( D( N ) ) |
111 | 1 | equemene | * |
112 | 1 | equemene | * Early return if SIGMX is zero (matrix is already diagonal). |
113 | 1 | equemene | * |
114 | 1 | equemene | IF( SIGMX.EQ.ZERO ) THEN |
115 | 1 | equemene | CALL DLASRT( 'D', N, D, IINFO ) |
116 | 1 | equemene | RETURN |
117 | 1 | equemene | END IF |
118 | 1 | equemene | * |
119 | 1 | equemene | DO 20 I = 1, N |
120 | 1 | equemene | SIGMX = MAX( SIGMX, D( I ) ) |
121 | 1 | equemene | 20 CONTINUE |
122 | 1 | equemene | * |
123 | 1 | equemene | * Copy D and E into WORK (in the Z format) and scale (squaring the |
124 | 1 | equemene | * input data makes scaling by a power of the radix pointless). |
125 | 1 | equemene | * |
126 | 1 | equemene | EPS = DLAMCH( 'Precision' ) |
127 | 1 | equemene | SAFMIN = DLAMCH( 'Safe minimum' ) |
128 | 1 | equemene | SCALE = SQRT( EPS / SAFMIN ) |
129 | 1 | equemene | CALL DCOPY( N, D, 1, WORK( 1 ), 2 ) |
130 | 1 | equemene | CALL DCOPY( N-1, E, 1, WORK( 2 ), 2 ) |
131 | 1 | equemene | CALL DLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1, |
132 | 1 | equemene | $ IINFO ) |
133 | 1 | equemene | * |
134 | 1 | equemene | * Compute the q's and e's. |
135 | 1 | equemene | * |
136 | 1 | equemene | DO 30 I = 1, 2*N - 1 |
137 | 1 | equemene | WORK( I ) = WORK( I )**2 |
138 | 1 | equemene | 30 CONTINUE |
139 | 1 | equemene | WORK( 2*N ) = ZERO |
140 | 1 | equemene | * |
141 | 1 | equemene | CALL DLASQ2( N, WORK, INFO ) |
142 | 1 | equemene | * |
143 | 1 | equemene | IF( INFO.EQ.0 ) THEN |
144 | 1 | equemene | DO 40 I = 1, N |
145 | 1 | equemene | D( I ) = SQRT( WORK( I ) ) |
146 | 1 | equemene | 40 CONTINUE |
147 | 1 | equemene | CALL DLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO ) |
148 | 1 | equemene | END IF |
149 | 1 | equemene | * |
150 | 1 | equemene | RETURN |
151 | 1 | equemene | * |
152 | 1 | equemene | * End of DLASQ1 |
153 | 1 | equemene | * |
154 | 1 | equemene | END |