Statistiques
| Révision :

root / src / lapack / double / dlasda.f @ 1

Historique | Voir | Annoter | Télécharger (14,39 ko)

1 1 equemene
      SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
2 1 equemene
     $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
3 1 equemene
     $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
4 1 equemene
*
5 1 equemene
*  -- LAPACK auxiliary routine (version 3.2.2) --
6 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
7 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
8 1 equemene
*     June 2010
9 1 equemene
*
10 1 equemene
*     .. Scalar Arguments ..
11 1 equemene
      INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
12 1 equemene
*     ..
13 1 equemene
*     .. Array Arguments ..
14 1 equemene
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
15 1 equemene
     $                   K( * ), PERM( LDGCOL, * )
16 1 equemene
      DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
17 1 equemene
     $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
18 1 equemene
     $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
19 1 equemene
     $                   Z( LDU, * )
20 1 equemene
*     ..
21 1 equemene
*
22 1 equemene
*  Purpose
23 1 equemene
*  =======
24 1 equemene
*
25 1 equemene
*  Using a divide and conquer approach, DLASDA computes the singular
26 1 equemene
*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
27 1 equemene
*  B with diagonal D and offdiagonal E, where M = N + SQRE. The
28 1 equemene
*  algorithm computes the singular values in the SVD B = U * S * VT.
29 1 equemene
*  The orthogonal matrices U and VT are optionally computed in
30 1 equemene
*  compact form.
31 1 equemene
*
32 1 equemene
*  A related subroutine, DLASD0, computes the singular values and
33 1 equemene
*  the singular vectors in explicit form.
34 1 equemene
*
35 1 equemene
*  Arguments
36 1 equemene
*  =========
37 1 equemene
*
38 1 equemene
*  ICOMPQ (input) INTEGER
39 1 equemene
*         Specifies whether singular vectors are to be computed
40 1 equemene
*         in compact form, as follows
41 1 equemene
*         = 0: Compute singular values only.
42 1 equemene
*         = 1: Compute singular vectors of upper bidiagonal
43 1 equemene
*              matrix in compact form.
44 1 equemene
*
45 1 equemene
*  SMLSIZ (input) INTEGER
46 1 equemene
*         The maximum size of the subproblems at the bottom of the
47 1 equemene
*         computation tree.
48 1 equemene
*
49 1 equemene
*  N      (input) INTEGER
50 1 equemene
*         The row dimension of the upper bidiagonal matrix. This is
51 1 equemene
*         also the dimension of the main diagonal array D.
52 1 equemene
*
53 1 equemene
*  SQRE   (input) INTEGER
54 1 equemene
*         Specifies the column dimension of the bidiagonal matrix.
55 1 equemene
*         = 0: The bidiagonal matrix has column dimension M = N;
56 1 equemene
*         = 1: The bidiagonal matrix has column dimension M = N + 1.
57 1 equemene
*
58 1 equemene
*  D      (input/output) DOUBLE PRECISION array, dimension ( N )
59 1 equemene
*         On entry D contains the main diagonal of the bidiagonal
60 1 equemene
*         matrix. On exit D, if INFO = 0, contains its singular values.
61 1 equemene
*
62 1 equemene
*  E      (input) DOUBLE PRECISION array, dimension ( M-1 )
63 1 equemene
*         Contains the subdiagonal entries of the bidiagonal matrix.
64 1 equemene
*         On exit, E has been destroyed.
65 1 equemene
*
66 1 equemene
*  U      (output) DOUBLE PRECISION array,
67 1 equemene
*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
68 1 equemene
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
69 1 equemene
*         singular vector matrices of all subproblems at the bottom
70 1 equemene
*         level.
71 1 equemene
*
72 1 equemene
*  LDU    (input) INTEGER, LDU = > N.
73 1 equemene
*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
74 1 equemene
*         GIVNUM, and Z.
75 1 equemene
*
76 1 equemene
*  VT     (output) DOUBLE PRECISION array,
77 1 equemene
*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
78 1 equemene
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
79 1 equemene
*         singular vector matrices of all subproblems at the bottom
80 1 equemene
*         level.
81 1 equemene
*
82 1 equemene
*  K      (output) INTEGER array,
83 1 equemene
*         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
84 1 equemene
*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
85 1 equemene
*         secular equation on the computation tree.
86 1 equemene
*
87 1 equemene
*  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
88 1 equemene
*         where NLVL = floor(log_2 (N/SMLSIZ))).
89 1 equemene
*
90 1 equemene
*  DIFR   (output) DOUBLE PRECISION array,
91 1 equemene
*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
92 1 equemene
*                  dimension ( N ) if ICOMPQ = 0.
93 1 equemene
*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
94 1 equemene
*         record distances between singular values on the I-th
95 1 equemene
*         level and singular values on the (I -1)-th level, and
96 1 equemene
*         DIFR(1:N, 2 * I ) contains the normalizing factors for
97 1 equemene
*         the right singular vector matrix. See DLASD8 for details.
98 1 equemene
*
99 1 equemene
*  Z      (output) DOUBLE PRECISION array,
100 1 equemene
*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
101 1 equemene
*                  dimension ( N ) if ICOMPQ = 0.
102 1 equemene
*         The first K elements of Z(1, I) contain the components of
103 1 equemene
*         the deflation-adjusted updating row vector for subproblems
104 1 equemene
*         on the I-th level.
105 1 equemene
*
106 1 equemene
*  POLES  (output) DOUBLE PRECISION array,
107 1 equemene
*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
108 1 equemene
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
109 1 equemene
*         POLES(1, 2*I) contain  the new and old singular values
110 1 equemene
*         involved in the secular equations on the I-th level.
111 1 equemene
*
112 1 equemene
*  GIVPTR (output) INTEGER array,
113 1 equemene
*         dimension ( N ) if ICOMPQ = 1, and not referenced if
114 1 equemene
*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
115 1 equemene
*         the number of Givens rotations performed on the I-th
116 1 equemene
*         problem on the computation tree.
117 1 equemene
*
118 1 equemene
*  GIVCOL (output) INTEGER array,
119 1 equemene
*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
120 1 equemene
*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
121 1 equemene
*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
122 1 equemene
*         of Givens rotations performed on the I-th level on the
123 1 equemene
*         computation tree.
124 1 equemene
*
125 1 equemene
*  LDGCOL (input) INTEGER, LDGCOL = > N.
126 1 equemene
*         The leading dimension of arrays GIVCOL and PERM.
127 1 equemene
*
128 1 equemene
*  PERM   (output) INTEGER array,
129 1 equemene
*         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
130 1 equemene
*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
131 1 equemene
*         permutations done on the I-th level of the computation tree.
132 1 equemene
*
133 1 equemene
*  GIVNUM (output) DOUBLE PRECISION array,
134 1 equemene
*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
135 1 equemene
*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
136 1 equemene
*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
137 1 equemene
*         values of Givens rotations performed on the I-th level on
138 1 equemene
*         the computation tree.
139 1 equemene
*
140 1 equemene
*  C      (output) DOUBLE PRECISION array,
141 1 equemene
*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
142 1 equemene
*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
143 1 equemene
*         C( I ) contains the C-value of a Givens rotation related to
144 1 equemene
*         the right null space of the I-th subproblem.
145 1 equemene
*
146 1 equemene
*  S      (output) DOUBLE PRECISION array, dimension ( N ) if
147 1 equemene
*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
148 1 equemene
*         and the I-th subproblem is not square, on exit, S( I )
149 1 equemene
*         contains the S-value of a Givens rotation related to
150 1 equemene
*         the right null space of the I-th subproblem.
151 1 equemene
*
152 1 equemene
*  WORK   (workspace) DOUBLE PRECISION array, dimension
153 1 equemene
*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
154 1 equemene
*
155 1 equemene
*  IWORK  (workspace) INTEGER array.
156 1 equemene
*         Dimension must be at least (7 * N).
157 1 equemene
*
158 1 equemene
*  INFO   (output) INTEGER
159 1 equemene
*          = 0:  successful exit.
160 1 equemene
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
161 1 equemene
*          > 0:  if INFO = 1, a singular value did not converge
162 1 equemene
*
163 1 equemene
*  Further Details
164 1 equemene
*  ===============
165 1 equemene
*
166 1 equemene
*  Based on contributions by
167 1 equemene
*     Ming Gu and Huan Ren, Computer Science Division, University of
168 1 equemene
*     California at Berkeley, USA
169 1 equemene
*
170 1 equemene
*  =====================================================================
171 1 equemene
*
172 1 equemene
*     .. Parameters ..
173 1 equemene
      DOUBLE PRECISION   ZERO, ONE
174 1 equemene
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
175 1 equemene
*     ..
176 1 equemene
*     .. Local Scalars ..
177 1 equemene
      INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
178 1 equemene
     $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
179 1 equemene
     $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
180 1 equemene
     $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
181 1 equemene
      DOUBLE PRECISION   ALPHA, BETA
182 1 equemene
*     ..
183 1 equemene
*     .. External Subroutines ..
184 1 equemene
      EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
185 1 equemene
*     ..
186 1 equemene
*     .. Executable Statements ..
187 1 equemene
*
188 1 equemene
*     Test the input parameters.
189 1 equemene
*
190 1 equemene
      INFO = 0
191 1 equemene
*
192 1 equemene
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
193 1 equemene
         INFO = -1
194 1 equemene
      ELSE IF( SMLSIZ.LT.3 ) THEN
195 1 equemene
         INFO = -2
196 1 equemene
      ELSE IF( N.LT.0 ) THEN
197 1 equemene
         INFO = -3
198 1 equemene
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
199 1 equemene
         INFO = -4
200 1 equemene
      ELSE IF( LDU.LT.( N+SQRE ) ) THEN
201 1 equemene
         INFO = -8
202 1 equemene
      ELSE IF( LDGCOL.LT.N ) THEN
203 1 equemene
         INFO = -17
204 1 equemene
      END IF
205 1 equemene
      IF( INFO.NE.0 ) THEN
206 1 equemene
         CALL XERBLA( 'DLASDA', -INFO )
207 1 equemene
         RETURN
208 1 equemene
      END IF
209 1 equemene
*
210 1 equemene
      M = N + SQRE
211 1 equemene
*
212 1 equemene
*     If the input matrix is too small, call DLASDQ to find the SVD.
213 1 equemene
*
214 1 equemene
      IF( N.LE.SMLSIZ ) THEN
215 1 equemene
         IF( ICOMPQ.EQ.0 ) THEN
216 1 equemene
            CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
217 1 equemene
     $                   U, LDU, WORK, INFO )
218 1 equemene
         ELSE
219 1 equemene
            CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
220 1 equemene
     $                   U, LDU, WORK, INFO )
221 1 equemene
         END IF
222 1 equemene
         RETURN
223 1 equemene
      END IF
224 1 equemene
*
225 1 equemene
*     Book-keeping and  set up the computation tree.
226 1 equemene
*
227 1 equemene
      INODE = 1
228 1 equemene
      NDIML = INODE + N
229 1 equemene
      NDIMR = NDIML + N
230 1 equemene
      IDXQ = NDIMR + N
231 1 equemene
      IWK = IDXQ + N
232 1 equemene
*
233 1 equemene
      NCC = 0
234 1 equemene
      NRU = 0
235 1 equemene
*
236 1 equemene
      SMLSZP = SMLSIZ + 1
237 1 equemene
      VF = 1
238 1 equemene
      VL = VF + M
239 1 equemene
      NWORK1 = VL + M
240 1 equemene
      NWORK2 = NWORK1 + SMLSZP*SMLSZP
241 1 equemene
*
242 1 equemene
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
243 1 equemene
     $             IWORK( NDIMR ), SMLSIZ )
244 1 equemene
*
245 1 equemene
*     for the nodes on bottom level of the tree, solve
246 1 equemene
*     their subproblems by DLASDQ.
247 1 equemene
*
248 1 equemene
      NDB1 = ( ND+1 ) / 2
249 1 equemene
      DO 30 I = NDB1, ND
250 1 equemene
*
251 1 equemene
*        IC : center row of each node
252 1 equemene
*        NL : number of rows of left  subproblem
253 1 equemene
*        NR : number of rows of right subproblem
254 1 equemene
*        NLF: starting row of the left   subproblem
255 1 equemene
*        NRF: starting row of the right  subproblem
256 1 equemene
*
257 1 equemene
         I1 = I - 1
258 1 equemene
         IC = IWORK( INODE+I1 )
259 1 equemene
         NL = IWORK( NDIML+I1 )
260 1 equemene
         NLP1 = NL + 1
261 1 equemene
         NR = IWORK( NDIMR+I1 )
262 1 equemene
         NLF = IC - NL
263 1 equemene
         NRF = IC + 1
264 1 equemene
         IDXQI = IDXQ + NLF - 2
265 1 equemene
         VFI = VF + NLF - 1
266 1 equemene
         VLI = VL + NLF - 1
267 1 equemene
         SQREI = 1
268 1 equemene
         IF( ICOMPQ.EQ.0 ) THEN
269 1 equemene
            CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
270 1 equemene
     $                   SMLSZP )
271 1 equemene
            CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
272 1 equemene
     $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
273 1 equemene
     $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
274 1 equemene
     $                   WORK( NWORK2 ), INFO )
275 1 equemene
            ITEMP = NWORK1 + NL*SMLSZP
276 1 equemene
            CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
277 1 equemene
            CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
278 1 equemene
         ELSE
279 1 equemene
            CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
280 1 equemene
            CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
281 1 equemene
            CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
282 1 equemene
     $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
283 1 equemene
     $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
284 1 equemene
            CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
285 1 equemene
            CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
286 1 equemene
         END IF
287 1 equemene
         IF( INFO.NE.0 ) THEN
288 1 equemene
            RETURN
289 1 equemene
         END IF
290 1 equemene
         DO 10 J = 1, NL
291 1 equemene
            IWORK( IDXQI+J ) = J
292 1 equemene
   10    CONTINUE
293 1 equemene
         IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
294 1 equemene
            SQREI = 0
295 1 equemene
         ELSE
296 1 equemene
            SQREI = 1
297 1 equemene
         END IF
298 1 equemene
         IDXQI = IDXQI + NLP1
299 1 equemene
         VFI = VFI + NLP1
300 1 equemene
         VLI = VLI + NLP1
301 1 equemene
         NRP1 = NR + SQREI
302 1 equemene
         IF( ICOMPQ.EQ.0 ) THEN
303 1 equemene
            CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
304 1 equemene
     $                   SMLSZP )
305 1 equemene
            CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
306 1 equemene
     $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
307 1 equemene
     $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
308 1 equemene
     $                   WORK( NWORK2 ), INFO )
309 1 equemene
            ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
310 1 equemene
            CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
311 1 equemene
            CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
312 1 equemene
         ELSE
313 1 equemene
            CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
314 1 equemene
            CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
315 1 equemene
            CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
316 1 equemene
     $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
317 1 equemene
     $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
318 1 equemene
            CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
319 1 equemene
            CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
320 1 equemene
         END IF
321 1 equemene
         IF( INFO.NE.0 ) THEN
322 1 equemene
            RETURN
323 1 equemene
         END IF
324 1 equemene
         DO 20 J = 1, NR
325 1 equemene
            IWORK( IDXQI+J ) = J
326 1 equemene
   20    CONTINUE
327 1 equemene
   30 CONTINUE
328 1 equemene
*
329 1 equemene
*     Now conquer each subproblem bottom-up.
330 1 equemene
*
331 1 equemene
      J = 2**NLVL
332 1 equemene
      DO 50 LVL = NLVL, 1, -1
333 1 equemene
         LVL2 = LVL*2 - 1
334 1 equemene
*
335 1 equemene
*        Find the first node LF and last node LL on
336 1 equemene
*        the current level LVL.
337 1 equemene
*
338 1 equemene
         IF( LVL.EQ.1 ) THEN
339 1 equemene
            LF = 1
340 1 equemene
            LL = 1
341 1 equemene
         ELSE
342 1 equemene
            LF = 2**( LVL-1 )
343 1 equemene
            LL = 2*LF - 1
344 1 equemene
         END IF
345 1 equemene
         DO 40 I = LF, LL
346 1 equemene
            IM1 = I - 1
347 1 equemene
            IC = IWORK( INODE+IM1 )
348 1 equemene
            NL = IWORK( NDIML+IM1 )
349 1 equemene
            NR = IWORK( NDIMR+IM1 )
350 1 equemene
            NLF = IC - NL
351 1 equemene
            NRF = IC + 1
352 1 equemene
            IF( I.EQ.LL ) THEN
353 1 equemene
               SQREI = SQRE
354 1 equemene
            ELSE
355 1 equemene
               SQREI = 1
356 1 equemene
            END IF
357 1 equemene
            VFI = VF + NLF - 1
358 1 equemene
            VLI = VL + NLF - 1
359 1 equemene
            IDXQI = IDXQ + NLF - 1
360 1 equemene
            ALPHA = D( IC )
361 1 equemene
            BETA = E( IC )
362 1 equemene
            IF( ICOMPQ.EQ.0 ) THEN
363 1 equemene
               CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
364 1 equemene
     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
365 1 equemene
     $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
366 1 equemene
     $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
367 1 equemene
     $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
368 1 equemene
     $                      IWORK( IWK ), INFO )
369 1 equemene
            ELSE
370 1 equemene
               J = J - 1
371 1 equemene
               CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
372 1 equemene
     $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
373 1 equemene
     $                      IWORK( IDXQI ), PERM( NLF, LVL ),
374 1 equemene
     $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
375 1 equemene
     $                      GIVNUM( NLF, LVL2 ), LDU,
376 1 equemene
     $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
377 1 equemene
     $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
378 1 equemene
     $                      C( J ), S( J ), WORK( NWORK1 ),
379 1 equemene
     $                      IWORK( IWK ), INFO )
380 1 equemene
            END IF
381 1 equemene
            IF( INFO.NE.0 ) THEN
382 1 equemene
               RETURN
383 1 equemene
            END IF
384 1 equemene
   40    CONTINUE
385 1 equemene
   50 CONTINUE
386 1 equemene
*
387 1 equemene
      RETURN
388 1 equemene
*
389 1 equemene
*     End of DLASDA
390 1 equemene
*
391 1 equemene
      END