root / src / lapack / double / dlanst.f @ 1
Historique | Voir | Annoter | Télécharger (3,51 ko)
1 | 1 | equemene | DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK auxiliary routine (version 3.2) -- |
4 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 | 1 | equemene | * November 2006 |
7 | 1 | equemene | * |
8 | 1 | equemene | * .. Scalar Arguments .. |
9 | 1 | equemene | CHARACTER NORM |
10 | 1 | equemene | INTEGER N |
11 | 1 | equemene | * .. |
12 | 1 | equemene | * .. Array Arguments .. |
13 | 1 | equemene | DOUBLE PRECISION D( * ), E( * ) |
14 | 1 | equemene | * .. |
15 | 1 | equemene | * |
16 | 1 | equemene | * Purpose |
17 | 1 | equemene | * ======= |
18 | 1 | equemene | * |
19 | 1 | equemene | * DLANST returns the value of the one norm, or the Frobenius norm, or |
20 | 1 | equemene | * the infinity norm, or the element of largest absolute value of a |
21 | 1 | equemene | * real symmetric tridiagonal matrix A. |
22 | 1 | equemene | * |
23 | 1 | equemene | * Description |
24 | 1 | equemene | * =========== |
25 | 1 | equemene | * |
26 | 1 | equemene | * DLANST returns the value |
27 | 1 | equemene | * |
28 | 1 | equemene | * DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' |
29 | 1 | equemene | * ( |
30 | 1 | equemene | * ( norm1(A), NORM = '1', 'O' or 'o' |
31 | 1 | equemene | * ( |
32 | 1 | equemene | * ( normI(A), NORM = 'I' or 'i' |
33 | 1 | equemene | * ( |
34 | 1 | equemene | * ( normF(A), NORM = 'F', 'f', 'E' or 'e' |
35 | 1 | equemene | * |
36 | 1 | equemene | * where norm1 denotes the one norm of a matrix (maximum column sum), |
37 | 1 | equemene | * normI denotes the infinity norm of a matrix (maximum row sum) and |
38 | 1 | equemene | * normF denotes the Frobenius norm of a matrix (square root of sum of |
39 | 1 | equemene | * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. |
40 | 1 | equemene | * |
41 | 1 | equemene | * Arguments |
42 | 1 | equemene | * ========= |
43 | 1 | equemene | * |
44 | 1 | equemene | * NORM (input) CHARACTER*1 |
45 | 1 | equemene | * Specifies the value to be returned in DLANST as described |
46 | 1 | equemene | * above. |
47 | 1 | equemene | * |
48 | 1 | equemene | * N (input) INTEGER |
49 | 1 | equemene | * The order of the matrix A. N >= 0. When N = 0, DLANST is |
50 | 1 | equemene | * set to zero. |
51 | 1 | equemene | * |
52 | 1 | equemene | * D (input) DOUBLE PRECISION array, dimension (N) |
53 | 1 | equemene | * The diagonal elements of A. |
54 | 1 | equemene | * |
55 | 1 | equemene | * E (input) DOUBLE PRECISION array, dimension (N-1) |
56 | 1 | equemene | * The (n-1) sub-diagonal or super-diagonal elements of A. |
57 | 1 | equemene | * |
58 | 1 | equemene | * ===================================================================== |
59 | 1 | equemene | * |
60 | 1 | equemene | * .. Parameters .. |
61 | 1 | equemene | DOUBLE PRECISION ONE, ZERO |
62 | 1 | equemene | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
63 | 1 | equemene | * .. |
64 | 1 | equemene | * .. Local Scalars .. |
65 | 1 | equemene | INTEGER I |
66 | 1 | equemene | DOUBLE PRECISION ANORM, SCALE, SUM |
67 | 1 | equemene | * .. |
68 | 1 | equemene | * .. External Functions .. |
69 | 1 | equemene | LOGICAL LSAME |
70 | 1 | equemene | EXTERNAL LSAME |
71 | 1 | equemene | * .. |
72 | 1 | equemene | * .. External Subroutines .. |
73 | 1 | equemene | EXTERNAL DLASSQ |
74 | 1 | equemene | * .. |
75 | 1 | equemene | * .. Intrinsic Functions .. |
76 | 1 | equemene | INTRINSIC ABS, MAX, SQRT |
77 | 1 | equemene | * .. |
78 | 1 | equemene | * .. Executable Statements .. |
79 | 1 | equemene | * |
80 | 1 | equemene | IF( N.LE.0 ) THEN |
81 | 1 | equemene | ANORM = ZERO |
82 | 1 | equemene | ELSE IF( LSAME( NORM, 'M' ) ) THEN |
83 | 1 | equemene | * |
84 | 1 | equemene | * Find max(abs(A(i,j))). |
85 | 1 | equemene | * |
86 | 1 | equemene | ANORM = ABS( D( N ) ) |
87 | 1 | equemene | DO 10 I = 1, N - 1 |
88 | 1 | equemene | ANORM = MAX( ANORM, ABS( D( I ) ) ) |
89 | 1 | equemene | ANORM = MAX( ANORM, ABS( E( I ) ) ) |
90 | 1 | equemene | 10 CONTINUE |
91 | 1 | equemene | ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR. |
92 | 1 | equemene | $ LSAME( NORM, 'I' ) ) THEN |
93 | 1 | equemene | * |
94 | 1 | equemene | * Find norm1(A). |
95 | 1 | equemene | * |
96 | 1 | equemene | IF( N.EQ.1 ) THEN |
97 | 1 | equemene | ANORM = ABS( D( 1 ) ) |
98 | 1 | equemene | ELSE |
99 | 1 | equemene | ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ), |
100 | 1 | equemene | $ ABS( E( N-1 ) )+ABS( D( N ) ) ) |
101 | 1 | equemene | DO 20 I = 2, N - 1 |
102 | 1 | equemene | ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+ |
103 | 1 | equemene | $ ABS( E( I-1 ) ) ) |
104 | 1 | equemene | 20 CONTINUE |
105 | 1 | equemene | END IF |
106 | 1 | equemene | ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN |
107 | 1 | equemene | * |
108 | 1 | equemene | * Find normF(A). |
109 | 1 | equemene | * |
110 | 1 | equemene | SCALE = ZERO |
111 | 1 | equemene | SUM = ONE |
112 | 1 | equemene | IF( N.GT.1 ) THEN |
113 | 1 | equemene | CALL DLASSQ( N-1, E, 1, SCALE, SUM ) |
114 | 1 | equemene | SUM = 2*SUM |
115 | 1 | equemene | END IF |
116 | 1 | equemene | CALL DLASSQ( N, D, 1, SCALE, SUM ) |
117 | 1 | equemene | ANORM = SCALE*SQRT( SUM ) |
118 | 1 | equemene | END IF |
119 | 1 | equemene | * |
120 | 1 | equemene | DLANST = ANORM |
121 | 1 | equemene | RETURN |
122 | 1 | equemene | * |
123 | 1 | equemene | * End of DLANST |
124 | 1 | equemene | * |
125 | 1 | equemene | END |