Statistiques
| Révision :

root / src / lapack / double / dlanst.f @ 1

Historique | Voir | Annoter | Télécharger (3,51 ko)

1 1 equemene
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
2 1 equemene
*
3 1 equemene
*  -- LAPACK auxiliary routine (version 3.2) --
4 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 equemene
*     November 2006
7 1 equemene
*
8 1 equemene
*     .. Scalar Arguments ..
9 1 equemene
      CHARACTER          NORM
10 1 equemene
      INTEGER            N
11 1 equemene
*     ..
12 1 equemene
*     .. Array Arguments ..
13 1 equemene
      DOUBLE PRECISION   D( * ), E( * )
14 1 equemene
*     ..
15 1 equemene
*
16 1 equemene
*  Purpose
17 1 equemene
*  =======
18 1 equemene
*
19 1 equemene
*  DLANST  returns the value of the one norm,  or the Frobenius norm, or
20 1 equemene
*  the  infinity norm,  or the  element of  largest absolute value  of a
21 1 equemene
*  real symmetric tridiagonal matrix A.
22 1 equemene
*
23 1 equemene
*  Description
24 1 equemene
*  ===========
25 1 equemene
*
26 1 equemene
*  DLANST returns the value
27 1 equemene
*
28 1 equemene
*     DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29 1 equemene
*              (
30 1 equemene
*              ( norm1(A),         NORM = '1', 'O' or 'o'
31 1 equemene
*              (
32 1 equemene
*              ( normI(A),         NORM = 'I' or 'i'
33 1 equemene
*              (
34 1 equemene
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
35 1 equemene
*
36 1 equemene
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
37 1 equemene
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
38 1 equemene
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
39 1 equemene
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
40 1 equemene
*
41 1 equemene
*  Arguments
42 1 equemene
*  =========
43 1 equemene
*
44 1 equemene
*  NORM    (input) CHARACTER*1
45 1 equemene
*          Specifies the value to be returned in DLANST as described
46 1 equemene
*          above.
47 1 equemene
*
48 1 equemene
*  N       (input) INTEGER
49 1 equemene
*          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
50 1 equemene
*          set to zero.
51 1 equemene
*
52 1 equemene
*  D       (input) DOUBLE PRECISION array, dimension (N)
53 1 equemene
*          The diagonal elements of A.
54 1 equemene
*
55 1 equemene
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
56 1 equemene
*          The (n-1) sub-diagonal or super-diagonal elements of A.
57 1 equemene
*
58 1 equemene
*  =====================================================================
59 1 equemene
*
60 1 equemene
*     .. Parameters ..
61 1 equemene
      DOUBLE PRECISION   ONE, ZERO
62 1 equemene
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
63 1 equemene
*     ..
64 1 equemene
*     .. Local Scalars ..
65 1 equemene
      INTEGER            I
66 1 equemene
      DOUBLE PRECISION   ANORM, SCALE, SUM
67 1 equemene
*     ..
68 1 equemene
*     .. External Functions ..
69 1 equemene
      LOGICAL            LSAME
70 1 equemene
      EXTERNAL           LSAME
71 1 equemene
*     ..
72 1 equemene
*     .. External Subroutines ..
73 1 equemene
      EXTERNAL           DLASSQ
74 1 equemene
*     ..
75 1 equemene
*     .. Intrinsic Functions ..
76 1 equemene
      INTRINSIC          ABS, MAX, SQRT
77 1 equemene
*     ..
78 1 equemene
*     .. Executable Statements ..
79 1 equemene
*
80 1 equemene
      IF( N.LE.0 ) THEN
81 1 equemene
         ANORM = ZERO
82 1 equemene
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
83 1 equemene
*
84 1 equemene
*        Find max(abs(A(i,j))).
85 1 equemene
*
86 1 equemene
         ANORM = ABS( D( N ) )
87 1 equemene
         DO 10 I = 1, N - 1
88 1 equemene
            ANORM = MAX( ANORM, ABS( D( I ) ) )
89 1 equemene
            ANORM = MAX( ANORM, ABS( E( I ) ) )
90 1 equemene
   10    CONTINUE
91 1 equemene
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
92 1 equemene
     $         LSAME( NORM, 'I' ) ) THEN
93 1 equemene
*
94 1 equemene
*        Find norm1(A).
95 1 equemene
*
96 1 equemene
         IF( N.EQ.1 ) THEN
97 1 equemene
            ANORM = ABS( D( 1 ) )
98 1 equemene
         ELSE
99 1 equemene
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
100 1 equemene
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
101 1 equemene
            DO 20 I = 2, N - 1
102 1 equemene
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
103 1 equemene
     $                 ABS( E( I-1 ) ) )
104 1 equemene
   20       CONTINUE
105 1 equemene
         END IF
106 1 equemene
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
107 1 equemene
*
108 1 equemene
*        Find normF(A).
109 1 equemene
*
110 1 equemene
         SCALE = ZERO
111 1 equemene
         SUM = ONE
112 1 equemene
         IF( N.GT.1 ) THEN
113 1 equemene
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
114 1 equemene
            SUM = 2*SUM
115 1 equemene
         END IF
116 1 equemene
         CALL DLASSQ( N, D, 1, SCALE, SUM )
117 1 equemene
         ANORM = SCALE*SQRT( SUM )
118 1 equemene
      END IF
119 1 equemene
*
120 1 equemene
      DLANST = ANORM
121 1 equemene
      RETURN
122 1 equemene
*
123 1 equemene
*     End of DLANST
124 1 equemene
*
125 1 equemene
      END