Statistiques
| Révision :

root / src / lapack / double / dlange.f @ 1

Historique | Voir | Annoter | Télécharger (3,95 ko)

1 1 equemene
      DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
2 1 equemene
*
3 1 equemene
*  -- LAPACK auxiliary routine (version 3.2) --
4 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
5 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 1 equemene
*     November 2006
7 1 equemene
*
8 1 equemene
*     .. Scalar Arguments ..
9 1 equemene
      CHARACTER          NORM
10 1 equemene
      INTEGER            LDA, M, N
11 1 equemene
*     ..
12 1 equemene
*     .. Array Arguments ..
13 1 equemene
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
14 1 equemene
*     ..
15 1 equemene
*
16 1 equemene
*  Purpose
17 1 equemene
*  =======
18 1 equemene
*
19 1 equemene
*  DLANGE  returns the value of the one norm,  or the Frobenius norm, or
20 1 equemene
*  the  infinity norm,  or the  element of  largest absolute value  of a
21 1 equemene
*  real matrix A.
22 1 equemene
*
23 1 equemene
*  Description
24 1 equemene
*  ===========
25 1 equemene
*
26 1 equemene
*  DLANGE returns the value
27 1 equemene
*
28 1 equemene
*     DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
29 1 equemene
*              (
30 1 equemene
*              ( norm1(A),         NORM = '1', 'O' or 'o'
31 1 equemene
*              (
32 1 equemene
*              ( normI(A),         NORM = 'I' or 'i'
33 1 equemene
*              (
34 1 equemene
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
35 1 equemene
*
36 1 equemene
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
37 1 equemene
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
38 1 equemene
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
39 1 equemene
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
40 1 equemene
*
41 1 equemene
*  Arguments
42 1 equemene
*  =========
43 1 equemene
*
44 1 equemene
*  NORM    (input) CHARACTER*1
45 1 equemene
*          Specifies the value to be returned in DLANGE as described
46 1 equemene
*          above.
47 1 equemene
*
48 1 equemene
*  M       (input) INTEGER
49 1 equemene
*          The number of rows of the matrix A.  M >= 0.  When M = 0,
50 1 equemene
*          DLANGE is set to zero.
51 1 equemene
*
52 1 equemene
*  N       (input) INTEGER
53 1 equemene
*          The number of columns of the matrix A.  N >= 0.  When N = 0,
54 1 equemene
*          DLANGE is set to zero.
55 1 equemene
*
56 1 equemene
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
57 1 equemene
*          The m by n matrix A.
58 1 equemene
*
59 1 equemene
*  LDA     (input) INTEGER
60 1 equemene
*          The leading dimension of the array A.  LDA >= max(M,1).
61 1 equemene
*
62 1 equemene
*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
63 1 equemene
*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
64 1 equemene
*          referenced.
65 1 equemene
*
66 1 equemene
* =====================================================================
67 1 equemene
*
68 1 equemene
*     .. Parameters ..
69 1 equemene
      DOUBLE PRECISION   ONE, ZERO
70 1 equemene
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
71 1 equemene
*     ..
72 1 equemene
*     .. Local Scalars ..
73 1 equemene
      INTEGER            I, J
74 1 equemene
      DOUBLE PRECISION   SCALE, SUM, VALUE
75 1 equemene
*     ..
76 1 equemene
*     .. External Subroutines ..
77 1 equemene
      EXTERNAL           DLASSQ
78 1 equemene
*     ..
79 1 equemene
*     .. External Functions ..
80 1 equemene
      LOGICAL            LSAME
81 1 equemene
      EXTERNAL           LSAME
82 1 equemene
*     ..
83 1 equemene
*     .. Intrinsic Functions ..
84 1 equemene
      INTRINSIC          ABS, MAX, MIN, SQRT
85 1 equemene
*     ..
86 1 equemene
*     .. Executable Statements ..
87 1 equemene
*
88 1 equemene
      IF( MIN( M, N ).EQ.0 ) THEN
89 1 equemene
         VALUE = ZERO
90 1 equemene
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
91 1 equemene
*
92 1 equemene
*        Find max(abs(A(i,j))).
93 1 equemene
*
94 1 equemene
         VALUE = ZERO
95 1 equemene
         DO 20 J = 1, N
96 1 equemene
            DO 10 I = 1, M
97 1 equemene
               VALUE = MAX( VALUE, ABS( A( I, J ) ) )
98 1 equemene
   10       CONTINUE
99 1 equemene
   20    CONTINUE
100 1 equemene
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
101 1 equemene
*
102 1 equemene
*        Find norm1(A).
103 1 equemene
*
104 1 equemene
         VALUE = ZERO
105 1 equemene
         DO 40 J = 1, N
106 1 equemene
            SUM = ZERO
107 1 equemene
            DO 30 I = 1, M
108 1 equemene
               SUM = SUM + ABS( A( I, J ) )
109 1 equemene
   30       CONTINUE
110 1 equemene
            VALUE = MAX( VALUE, SUM )
111 1 equemene
   40    CONTINUE
112 1 equemene
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
113 1 equemene
*
114 1 equemene
*        Find normI(A).
115 1 equemene
*
116 1 equemene
         DO 50 I = 1, M
117 1 equemene
            WORK( I ) = ZERO
118 1 equemene
   50    CONTINUE
119 1 equemene
         DO 70 J = 1, N
120 1 equemene
            DO 60 I = 1, M
121 1 equemene
               WORK( I ) = WORK( I ) + ABS( A( I, J ) )
122 1 equemene
   60       CONTINUE
123 1 equemene
   70    CONTINUE
124 1 equemene
         VALUE = ZERO
125 1 equemene
         DO 80 I = 1, M
126 1 equemene
            VALUE = MAX( VALUE, WORK( I ) )
127 1 equemene
   80    CONTINUE
128 1 equemene
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
129 1 equemene
*
130 1 equemene
*        Find normF(A).
131 1 equemene
*
132 1 equemene
         SCALE = ZERO
133 1 equemene
         SUM = ONE
134 1 equemene
         DO 90 J = 1, N
135 1 equemene
            CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
136 1 equemene
   90    CONTINUE
137 1 equemene
         VALUE = SCALE*SQRT( SUM )
138 1 equemene
      END IF
139 1 equemene
*
140 1 equemene
      DLANGE = VALUE
141 1 equemene
      RETURN
142 1 equemene
*
143 1 equemene
*     End of DLANGE
144 1 equemene
*
145 1 equemene
      END