root / src / lapack / double / dlange.f @ 1
Historique | Voir | Annoter | Télécharger (3,95 ko)
1 | 1 | equemene | DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK ) |
---|---|---|---|
2 | 1 | equemene | * |
3 | 1 | equemene | * -- LAPACK auxiliary routine (version 3.2) -- |
4 | 1 | equemene | * -- LAPACK is a software package provided by Univ. of Tennessee, -- |
5 | 1 | equemene | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
6 | 1 | equemene | * November 2006 |
7 | 1 | equemene | * |
8 | 1 | equemene | * .. Scalar Arguments .. |
9 | 1 | equemene | CHARACTER NORM |
10 | 1 | equemene | INTEGER LDA, M, N |
11 | 1 | equemene | * .. |
12 | 1 | equemene | * .. Array Arguments .. |
13 | 1 | equemene | DOUBLE PRECISION A( LDA, * ), WORK( * ) |
14 | 1 | equemene | * .. |
15 | 1 | equemene | * |
16 | 1 | equemene | * Purpose |
17 | 1 | equemene | * ======= |
18 | 1 | equemene | * |
19 | 1 | equemene | * DLANGE returns the value of the one norm, or the Frobenius norm, or |
20 | 1 | equemene | * the infinity norm, or the element of largest absolute value of a |
21 | 1 | equemene | * real matrix A. |
22 | 1 | equemene | * |
23 | 1 | equemene | * Description |
24 | 1 | equemene | * =========== |
25 | 1 | equemene | * |
26 | 1 | equemene | * DLANGE returns the value |
27 | 1 | equemene | * |
28 | 1 | equemene | * DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' |
29 | 1 | equemene | * ( |
30 | 1 | equemene | * ( norm1(A), NORM = '1', 'O' or 'o' |
31 | 1 | equemene | * ( |
32 | 1 | equemene | * ( normI(A), NORM = 'I' or 'i' |
33 | 1 | equemene | * ( |
34 | 1 | equemene | * ( normF(A), NORM = 'F', 'f', 'E' or 'e' |
35 | 1 | equemene | * |
36 | 1 | equemene | * where norm1 denotes the one norm of a matrix (maximum column sum), |
37 | 1 | equemene | * normI denotes the infinity norm of a matrix (maximum row sum) and |
38 | 1 | equemene | * normF denotes the Frobenius norm of a matrix (square root of sum of |
39 | 1 | equemene | * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. |
40 | 1 | equemene | * |
41 | 1 | equemene | * Arguments |
42 | 1 | equemene | * ========= |
43 | 1 | equemene | * |
44 | 1 | equemene | * NORM (input) CHARACTER*1 |
45 | 1 | equemene | * Specifies the value to be returned in DLANGE as described |
46 | 1 | equemene | * above. |
47 | 1 | equemene | * |
48 | 1 | equemene | * M (input) INTEGER |
49 | 1 | equemene | * The number of rows of the matrix A. M >= 0. When M = 0, |
50 | 1 | equemene | * DLANGE is set to zero. |
51 | 1 | equemene | * |
52 | 1 | equemene | * N (input) INTEGER |
53 | 1 | equemene | * The number of columns of the matrix A. N >= 0. When N = 0, |
54 | 1 | equemene | * DLANGE is set to zero. |
55 | 1 | equemene | * |
56 | 1 | equemene | * A (input) DOUBLE PRECISION array, dimension (LDA,N) |
57 | 1 | equemene | * The m by n matrix A. |
58 | 1 | equemene | * |
59 | 1 | equemene | * LDA (input) INTEGER |
60 | 1 | equemene | * The leading dimension of the array A. LDA >= max(M,1). |
61 | 1 | equemene | * |
62 | 1 | equemene | * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), |
63 | 1 | equemene | * where LWORK >= M when NORM = 'I'; otherwise, WORK is not |
64 | 1 | equemene | * referenced. |
65 | 1 | equemene | * |
66 | 1 | equemene | * ===================================================================== |
67 | 1 | equemene | * |
68 | 1 | equemene | * .. Parameters .. |
69 | 1 | equemene | DOUBLE PRECISION ONE, ZERO |
70 | 1 | equemene | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
71 | 1 | equemene | * .. |
72 | 1 | equemene | * .. Local Scalars .. |
73 | 1 | equemene | INTEGER I, J |
74 | 1 | equemene | DOUBLE PRECISION SCALE, SUM, VALUE |
75 | 1 | equemene | * .. |
76 | 1 | equemene | * .. External Subroutines .. |
77 | 1 | equemene | EXTERNAL DLASSQ |
78 | 1 | equemene | * .. |
79 | 1 | equemene | * .. External Functions .. |
80 | 1 | equemene | LOGICAL LSAME |
81 | 1 | equemene | EXTERNAL LSAME |
82 | 1 | equemene | * .. |
83 | 1 | equemene | * .. Intrinsic Functions .. |
84 | 1 | equemene | INTRINSIC ABS, MAX, MIN, SQRT |
85 | 1 | equemene | * .. |
86 | 1 | equemene | * .. Executable Statements .. |
87 | 1 | equemene | * |
88 | 1 | equemene | IF( MIN( M, N ).EQ.0 ) THEN |
89 | 1 | equemene | VALUE = ZERO |
90 | 1 | equemene | ELSE IF( LSAME( NORM, 'M' ) ) THEN |
91 | 1 | equemene | * |
92 | 1 | equemene | * Find max(abs(A(i,j))). |
93 | 1 | equemene | * |
94 | 1 | equemene | VALUE = ZERO |
95 | 1 | equemene | DO 20 J = 1, N |
96 | 1 | equemene | DO 10 I = 1, M |
97 | 1 | equemene | VALUE = MAX( VALUE, ABS( A( I, J ) ) ) |
98 | 1 | equemene | 10 CONTINUE |
99 | 1 | equemene | 20 CONTINUE |
100 | 1 | equemene | ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN |
101 | 1 | equemene | * |
102 | 1 | equemene | * Find norm1(A). |
103 | 1 | equemene | * |
104 | 1 | equemene | VALUE = ZERO |
105 | 1 | equemene | DO 40 J = 1, N |
106 | 1 | equemene | SUM = ZERO |
107 | 1 | equemene | DO 30 I = 1, M |
108 | 1 | equemene | SUM = SUM + ABS( A( I, J ) ) |
109 | 1 | equemene | 30 CONTINUE |
110 | 1 | equemene | VALUE = MAX( VALUE, SUM ) |
111 | 1 | equemene | 40 CONTINUE |
112 | 1 | equemene | ELSE IF( LSAME( NORM, 'I' ) ) THEN |
113 | 1 | equemene | * |
114 | 1 | equemene | * Find normI(A). |
115 | 1 | equemene | * |
116 | 1 | equemene | DO 50 I = 1, M |
117 | 1 | equemene | WORK( I ) = ZERO |
118 | 1 | equemene | 50 CONTINUE |
119 | 1 | equemene | DO 70 J = 1, N |
120 | 1 | equemene | DO 60 I = 1, M |
121 | 1 | equemene | WORK( I ) = WORK( I ) + ABS( A( I, J ) ) |
122 | 1 | equemene | 60 CONTINUE |
123 | 1 | equemene | 70 CONTINUE |
124 | 1 | equemene | VALUE = ZERO |
125 | 1 | equemene | DO 80 I = 1, M |
126 | 1 | equemene | VALUE = MAX( VALUE, WORK( I ) ) |
127 | 1 | equemene | 80 CONTINUE |
128 | 1 | equemene | ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN |
129 | 1 | equemene | * |
130 | 1 | equemene | * Find normF(A). |
131 | 1 | equemene | * |
132 | 1 | equemene | SCALE = ZERO |
133 | 1 | equemene | SUM = ONE |
134 | 1 | equemene | DO 90 J = 1, N |
135 | 1 | equemene | CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM ) |
136 | 1 | equemene | 90 CONTINUE |
137 | 1 | equemene | VALUE = SCALE*SQRT( SUM ) |
138 | 1 | equemene | END IF |
139 | 1 | equemene | * |
140 | 1 | equemene | DLANGE = VALUE |
141 | 1 | equemene | RETURN |
142 | 1 | equemene | * |
143 | 1 | equemene | * End of DLANGE |
144 | 1 | equemene | * |
145 | 1 | equemene | END |