Statistiques
| Révision :

root / src / lapack / double / dlalsd.f @ 1

Historique | Voir | Annoter | Télécharger (14,44 ko)

1 1 equemene
      SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
2 1 equemene
     $                   RANK, WORK, IWORK, INFO )
3 1 equemene
*
4 1 equemene
*  -- LAPACK routine (version 3.2.2) --
5 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 1 equemene
*     June 2010
8 1 equemene
*
9 1 equemene
*     .. Scalar Arguments ..
10 1 equemene
      CHARACTER          UPLO
11 1 equemene
      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
12 1 equemene
      DOUBLE PRECISION   RCOND
13 1 equemene
*     ..
14 1 equemene
*     .. Array Arguments ..
15 1 equemene
      INTEGER            IWORK( * )
16 1 equemene
      DOUBLE PRECISION   B( LDB, * ), D( * ), E( * ), WORK( * )
17 1 equemene
*     ..
18 1 equemene
*
19 1 equemene
*  Purpose
20 1 equemene
*  =======
21 1 equemene
*
22 1 equemene
*  DLALSD uses the singular value decomposition of A to solve the least
23 1 equemene
*  squares problem of finding X to minimize the Euclidean norm of each
24 1 equemene
*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
25 1 equemene
*  are N-by-NRHS. The solution X overwrites B.
26 1 equemene
*
27 1 equemene
*  The singular values of A smaller than RCOND times the largest
28 1 equemene
*  singular value are treated as zero in solving the least squares
29 1 equemene
*  problem; in this case a minimum norm solution is returned.
30 1 equemene
*  The actual singular values are returned in D in ascending order.
31 1 equemene
*
32 1 equemene
*  This code makes very mild assumptions about floating point
33 1 equemene
*  arithmetic. It will work on machines with a guard digit in
34 1 equemene
*  add/subtract, or on those binary machines without guard digits
35 1 equemene
*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
36 1 equemene
*  It could conceivably fail on hexadecimal or decimal machines
37 1 equemene
*  without guard digits, but we know of none.
38 1 equemene
*
39 1 equemene
*  Arguments
40 1 equemene
*  =========
41 1 equemene
*
42 1 equemene
*  UPLO   (input) CHARACTER*1
43 1 equemene
*         = 'U': D and E define an upper bidiagonal matrix.
44 1 equemene
*         = 'L': D and E define a  lower bidiagonal matrix.
45 1 equemene
*
46 1 equemene
*  SMLSIZ (input) INTEGER
47 1 equemene
*         The maximum size of the subproblems at the bottom of the
48 1 equemene
*         computation tree.
49 1 equemene
*
50 1 equemene
*  N      (input) INTEGER
51 1 equemene
*         The dimension of the  bidiagonal matrix.  N >= 0.
52 1 equemene
*
53 1 equemene
*  NRHS   (input) INTEGER
54 1 equemene
*         The number of columns of B. NRHS must be at least 1.
55 1 equemene
*
56 1 equemene
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
57 1 equemene
*         On entry D contains the main diagonal of the bidiagonal
58 1 equemene
*         matrix. On exit, if INFO = 0, D contains its singular values.
59 1 equemene
*
60 1 equemene
*  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
61 1 equemene
*         Contains the super-diagonal entries of the bidiagonal matrix.
62 1 equemene
*         On exit, E has been destroyed.
63 1 equemene
*
64 1 equemene
*  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
65 1 equemene
*         On input, B contains the right hand sides of the least
66 1 equemene
*         squares problem. On output, B contains the solution X.
67 1 equemene
*
68 1 equemene
*  LDB    (input) INTEGER
69 1 equemene
*         The leading dimension of B in the calling subprogram.
70 1 equemene
*         LDB must be at least max(1,N).
71 1 equemene
*
72 1 equemene
*  RCOND  (input) DOUBLE PRECISION
73 1 equemene
*         The singular values of A less than or equal to RCOND times
74 1 equemene
*         the largest singular value are treated as zero in solving
75 1 equemene
*         the least squares problem. If RCOND is negative,
76 1 equemene
*         machine precision is used instead.
77 1 equemene
*         For example, if diag(S)*X=B were the least squares problem,
78 1 equemene
*         where diag(S) is a diagonal matrix of singular values, the
79 1 equemene
*         solution would be X(i) = B(i) / S(i) if S(i) is greater than
80 1 equemene
*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
81 1 equemene
*         RCOND*max(S).
82 1 equemene
*
83 1 equemene
*  RANK   (output) INTEGER
84 1 equemene
*         The number of singular values of A greater than RCOND times
85 1 equemene
*         the largest singular value.
86 1 equemene
*
87 1 equemene
*  WORK   (workspace) DOUBLE PRECISION array, dimension at least
88 1 equemene
*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
89 1 equemene
*         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
90 1 equemene
*
91 1 equemene
*  IWORK  (workspace) INTEGER array, dimension at least
92 1 equemene
*         (3*N*NLVL + 11*N)
93 1 equemene
*
94 1 equemene
*  INFO   (output) INTEGER
95 1 equemene
*         = 0:  successful exit.
96 1 equemene
*         < 0:  if INFO = -i, the i-th argument had an illegal value.
97 1 equemene
*         > 0:  The algorithm failed to compute a singular value while
98 1 equemene
*               working on the submatrix lying in rows and columns
99 1 equemene
*               INFO/(N+1) through MOD(INFO,N+1).
100 1 equemene
*
101 1 equemene
*  Further Details
102 1 equemene
*  ===============
103 1 equemene
*
104 1 equemene
*  Based on contributions by
105 1 equemene
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
106 1 equemene
*       California at Berkeley, USA
107 1 equemene
*     Osni Marques, LBNL/NERSC, USA
108 1 equemene
*
109 1 equemene
*  =====================================================================
110 1 equemene
*
111 1 equemene
*     .. Parameters ..
112 1 equemene
      DOUBLE PRECISION   ZERO, ONE, TWO
113 1 equemene
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
114 1 equemene
*     ..
115 1 equemene
*     .. Local Scalars ..
116 1 equemene
      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
117 1 equemene
     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
118 1 equemene
     $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
119 1 equemene
     $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
120 1 equemene
      DOUBLE PRECISION   CS, EPS, ORGNRM, R, RCND, SN, TOL
121 1 equemene
*     ..
122 1 equemene
*     .. External Functions ..
123 1 equemene
      INTEGER            IDAMAX
124 1 equemene
      DOUBLE PRECISION   DLAMCH, DLANST
125 1 equemene
      EXTERNAL           IDAMAX, DLAMCH, DLANST
126 1 equemene
*     ..
127 1 equemene
*     .. External Subroutines ..
128 1 equemene
      EXTERNAL           DCOPY, DGEMM, DLACPY, DLALSA, DLARTG, DLASCL,
129 1 equemene
     $                   DLASDA, DLASDQ, DLASET, DLASRT, DROT, XERBLA
130 1 equemene
*     ..
131 1 equemene
*     .. Intrinsic Functions ..
132 1 equemene
      INTRINSIC          ABS, DBLE, INT, LOG, SIGN
133 1 equemene
*     ..
134 1 equemene
*     .. Executable Statements ..
135 1 equemene
*
136 1 equemene
*     Test the input parameters.
137 1 equemene
*
138 1 equemene
      INFO = 0
139 1 equemene
*
140 1 equemene
      IF( N.LT.0 ) THEN
141 1 equemene
         INFO = -3
142 1 equemene
      ELSE IF( NRHS.LT.1 ) THEN
143 1 equemene
         INFO = -4
144 1 equemene
      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
145 1 equemene
         INFO = -8
146 1 equemene
      END IF
147 1 equemene
      IF( INFO.NE.0 ) THEN
148 1 equemene
         CALL XERBLA( 'DLALSD', -INFO )
149 1 equemene
         RETURN
150 1 equemene
      END IF
151 1 equemene
*
152 1 equemene
      EPS = DLAMCH( 'Epsilon' )
153 1 equemene
*
154 1 equemene
*     Set up the tolerance.
155 1 equemene
*
156 1 equemene
      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
157 1 equemene
         RCND = EPS
158 1 equemene
      ELSE
159 1 equemene
         RCND = RCOND
160 1 equemene
      END IF
161 1 equemene
*
162 1 equemene
      RANK = 0
163 1 equemene
*
164 1 equemene
*     Quick return if possible.
165 1 equemene
*
166 1 equemene
      IF( N.EQ.0 ) THEN
167 1 equemene
         RETURN
168 1 equemene
      ELSE IF( N.EQ.1 ) THEN
169 1 equemene
         IF( D( 1 ).EQ.ZERO ) THEN
170 1 equemene
            CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
171 1 equemene
         ELSE
172 1 equemene
            RANK = 1
173 1 equemene
            CALL DLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
174 1 equemene
            D( 1 ) = ABS( D( 1 ) )
175 1 equemene
         END IF
176 1 equemene
         RETURN
177 1 equemene
      END IF
178 1 equemene
*
179 1 equemene
*     Rotate the matrix if it is lower bidiagonal.
180 1 equemene
*
181 1 equemene
      IF( UPLO.EQ.'L' ) THEN
182 1 equemene
         DO 10 I = 1, N - 1
183 1 equemene
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
184 1 equemene
            D( I ) = R
185 1 equemene
            E( I ) = SN*D( I+1 )
186 1 equemene
            D( I+1 ) = CS*D( I+1 )
187 1 equemene
            IF( NRHS.EQ.1 ) THEN
188 1 equemene
               CALL DROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
189 1 equemene
            ELSE
190 1 equemene
               WORK( I*2-1 ) = CS
191 1 equemene
               WORK( I*2 ) = SN
192 1 equemene
            END IF
193 1 equemene
   10    CONTINUE
194 1 equemene
         IF( NRHS.GT.1 ) THEN
195 1 equemene
            DO 30 I = 1, NRHS
196 1 equemene
               DO 20 J = 1, N - 1
197 1 equemene
                  CS = WORK( J*2-1 )
198 1 equemene
                  SN = WORK( J*2 )
199 1 equemene
                  CALL DROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
200 1 equemene
   20          CONTINUE
201 1 equemene
   30       CONTINUE
202 1 equemene
         END IF
203 1 equemene
      END IF
204 1 equemene
*
205 1 equemene
*     Scale.
206 1 equemene
*
207 1 equemene
      NM1 = N - 1
208 1 equemene
      ORGNRM = DLANST( 'M', N, D, E )
209 1 equemene
      IF( ORGNRM.EQ.ZERO ) THEN
210 1 equemene
         CALL DLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
211 1 equemene
         RETURN
212 1 equemene
      END IF
213 1 equemene
*
214 1 equemene
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
215 1 equemene
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
216 1 equemene
*
217 1 equemene
*     If N is smaller than the minimum divide size SMLSIZ, then solve
218 1 equemene
*     the problem with another solver.
219 1 equemene
*
220 1 equemene
      IF( N.LE.SMLSIZ ) THEN
221 1 equemene
         NWORK = 1 + N*N
222 1 equemene
         CALL DLASET( 'A', N, N, ZERO, ONE, WORK, N )
223 1 equemene
         CALL DLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
224 1 equemene
     $                LDB, WORK( NWORK ), INFO )
225 1 equemene
         IF( INFO.NE.0 ) THEN
226 1 equemene
            RETURN
227 1 equemene
         END IF
228 1 equemene
         TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
229 1 equemene
         DO 40 I = 1, N
230 1 equemene
            IF( D( I ).LE.TOL ) THEN
231 1 equemene
               CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
232 1 equemene
            ELSE
233 1 equemene
               CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
234 1 equemene
     $                      LDB, INFO )
235 1 equemene
               RANK = RANK + 1
236 1 equemene
            END IF
237 1 equemene
   40    CONTINUE
238 1 equemene
         CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
239 1 equemene
     $               WORK( NWORK ), N )
240 1 equemene
         CALL DLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
241 1 equemene
*
242 1 equemene
*        Unscale.
243 1 equemene
*
244 1 equemene
         CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
245 1 equemene
         CALL DLASRT( 'D', N, D, INFO )
246 1 equemene
         CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
247 1 equemene
*
248 1 equemene
         RETURN
249 1 equemene
      END IF
250 1 equemene
*
251 1 equemene
*     Book-keeping and setting up some constants.
252 1 equemene
*
253 1 equemene
      NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
254 1 equemene
*
255 1 equemene
      SMLSZP = SMLSIZ + 1
256 1 equemene
*
257 1 equemene
      U = 1
258 1 equemene
      VT = 1 + SMLSIZ*N
259 1 equemene
      DIFL = VT + SMLSZP*N
260 1 equemene
      DIFR = DIFL + NLVL*N
261 1 equemene
      Z = DIFR + NLVL*N*2
262 1 equemene
      C = Z + NLVL*N
263 1 equemene
      S = C + N
264 1 equemene
      POLES = S + N
265 1 equemene
      GIVNUM = POLES + 2*NLVL*N
266 1 equemene
      BX = GIVNUM + 2*NLVL*N
267 1 equemene
      NWORK = BX + N*NRHS
268 1 equemene
*
269 1 equemene
      SIZEI = 1 + N
270 1 equemene
      K = SIZEI + N
271 1 equemene
      GIVPTR = K + N
272 1 equemene
      PERM = GIVPTR + N
273 1 equemene
      GIVCOL = PERM + NLVL*N
274 1 equemene
      IWK = GIVCOL + NLVL*N*2
275 1 equemene
*
276 1 equemene
      ST = 1
277 1 equemene
      SQRE = 0
278 1 equemene
      ICMPQ1 = 1
279 1 equemene
      ICMPQ2 = 0
280 1 equemene
      NSUB = 0
281 1 equemene
*
282 1 equemene
      DO 50 I = 1, N
283 1 equemene
         IF( ABS( D( I ) ).LT.EPS ) THEN
284 1 equemene
            D( I ) = SIGN( EPS, D( I ) )
285 1 equemene
         END IF
286 1 equemene
   50 CONTINUE
287 1 equemene
*
288 1 equemene
      DO 60 I = 1, NM1
289 1 equemene
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
290 1 equemene
            NSUB = NSUB + 1
291 1 equemene
            IWORK( NSUB ) = ST
292 1 equemene
*
293 1 equemene
*           Subproblem found. First determine its size and then
294 1 equemene
*           apply divide and conquer on it.
295 1 equemene
*
296 1 equemene
            IF( I.LT.NM1 ) THEN
297 1 equemene
*
298 1 equemene
*              A subproblem with E(I) small for I < NM1.
299 1 equemene
*
300 1 equemene
               NSIZE = I - ST + 1
301 1 equemene
               IWORK( SIZEI+NSUB-1 ) = NSIZE
302 1 equemene
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
303 1 equemene
*
304 1 equemene
*              A subproblem with E(NM1) not too small but I = NM1.
305 1 equemene
*
306 1 equemene
               NSIZE = N - ST + 1
307 1 equemene
               IWORK( SIZEI+NSUB-1 ) = NSIZE
308 1 equemene
            ELSE
309 1 equemene
*
310 1 equemene
*              A subproblem with E(NM1) small. This implies an
311 1 equemene
*              1-by-1 subproblem at D(N), which is not solved
312 1 equemene
*              explicitly.
313 1 equemene
*
314 1 equemene
               NSIZE = I - ST + 1
315 1 equemene
               IWORK( SIZEI+NSUB-1 ) = NSIZE
316 1 equemene
               NSUB = NSUB + 1
317 1 equemene
               IWORK( NSUB ) = N
318 1 equemene
               IWORK( SIZEI+NSUB-1 ) = 1
319 1 equemene
               CALL DCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
320 1 equemene
            END IF
321 1 equemene
            ST1 = ST - 1
322 1 equemene
            IF( NSIZE.EQ.1 ) THEN
323 1 equemene
*
324 1 equemene
*              This is a 1-by-1 subproblem and is not solved
325 1 equemene
*              explicitly.
326 1 equemene
*
327 1 equemene
               CALL DCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
328 1 equemene
            ELSE IF( NSIZE.LE.SMLSIZ ) THEN
329 1 equemene
*
330 1 equemene
*              This is a small subproblem and is solved by DLASDQ.
331 1 equemene
*
332 1 equemene
               CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
333 1 equemene
     $                      WORK( VT+ST1 ), N )
334 1 equemene
               CALL DLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
335 1 equemene
     $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
336 1 equemene
     $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
337 1 equemene
               IF( INFO.NE.0 ) THEN
338 1 equemene
                  RETURN
339 1 equemene
               END IF
340 1 equemene
               CALL DLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
341 1 equemene
     $                      WORK( BX+ST1 ), N )
342 1 equemene
            ELSE
343 1 equemene
*
344 1 equemene
*              A large problem. Solve it using divide and conquer.
345 1 equemene
*
346 1 equemene
               CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
347 1 equemene
     $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
348 1 equemene
     $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
349 1 equemene
     $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
350 1 equemene
     $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
351 1 equemene
     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
352 1 equemene
     $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
353 1 equemene
     $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
354 1 equemene
     $                      INFO )
355 1 equemene
               IF( INFO.NE.0 ) THEN
356 1 equemene
                  RETURN
357 1 equemene
               END IF
358 1 equemene
               BXST = BX + ST1
359 1 equemene
               CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
360 1 equemene
     $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
361 1 equemene
     $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
362 1 equemene
     $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
363 1 equemene
     $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
364 1 equemene
     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
365 1 equemene
     $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
366 1 equemene
     $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
367 1 equemene
     $                      IWORK( IWK ), INFO )
368 1 equemene
               IF( INFO.NE.0 ) THEN
369 1 equemene
                  RETURN
370 1 equemene
               END IF
371 1 equemene
            END IF
372 1 equemene
            ST = I + 1
373 1 equemene
         END IF
374 1 equemene
   60 CONTINUE
375 1 equemene
*
376 1 equemene
*     Apply the singular values and treat the tiny ones as zero.
377 1 equemene
*
378 1 equemene
      TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
379 1 equemene
*
380 1 equemene
      DO 70 I = 1, N
381 1 equemene
*
382 1 equemene
*        Some of the elements in D can be negative because 1-by-1
383 1 equemene
*        subproblems were not solved explicitly.
384 1 equemene
*
385 1 equemene
         IF( ABS( D( I ) ).LE.TOL ) THEN
386 1 equemene
            CALL DLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
387 1 equemene
         ELSE
388 1 equemene
            RANK = RANK + 1
389 1 equemene
            CALL DLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
390 1 equemene
     $                   WORK( BX+I-1 ), N, INFO )
391 1 equemene
         END IF
392 1 equemene
         D( I ) = ABS( D( I ) )
393 1 equemene
   70 CONTINUE
394 1 equemene
*
395 1 equemene
*     Now apply back the right singular vectors.
396 1 equemene
*
397 1 equemene
      ICMPQ2 = 1
398 1 equemene
      DO 80 I = 1, NSUB
399 1 equemene
         ST = IWORK( I )
400 1 equemene
         ST1 = ST - 1
401 1 equemene
         NSIZE = IWORK( SIZEI+I-1 )
402 1 equemene
         BXST = BX + ST1
403 1 equemene
         IF( NSIZE.EQ.1 ) THEN
404 1 equemene
            CALL DCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
405 1 equemene
         ELSE IF( NSIZE.LE.SMLSIZ ) THEN
406 1 equemene
            CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
407 1 equemene
     $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
408 1 equemene
     $                  B( ST, 1 ), LDB )
409 1 equemene
         ELSE
410 1 equemene
            CALL DLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
411 1 equemene
     $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
412 1 equemene
     $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
413 1 equemene
     $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
414 1 equemene
     $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
415 1 equemene
     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
416 1 equemene
     $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
417 1 equemene
     $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
418 1 equemene
     $                   IWORK( IWK ), INFO )
419 1 equemene
            IF( INFO.NE.0 ) THEN
420 1 equemene
               RETURN
421 1 equemene
            END IF
422 1 equemene
         END IF
423 1 equemene
   80 CONTINUE
424 1 equemene
*
425 1 equemene
*     Unscale and sort the singular values.
426 1 equemene
*
427 1 equemene
      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
428 1 equemene
      CALL DLASRT( 'D', N, D, INFO )
429 1 equemene
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
430 1 equemene
*
431 1 equemene
      RETURN
432 1 equemene
*
433 1 equemene
*     End of DLALSD
434 1 equemene
*
435 1 equemene
      END