Statistiques
| Révision :

root / src / lapack / double / dlabrd.f @ 1

Historique | Voir | Annoter | Télécharger (11,42 ko)

1 1 equemene
      SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
2 1 equemene
     $                   LDY )
3 1 equemene
*
4 1 equemene
*  -- LAPACK auxiliary routine (version 3.2) --
5 1 equemene
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
6 1 equemene
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
7 1 equemene
*     November 2006
8 1 equemene
*
9 1 equemene
*     .. Scalar Arguments ..
10 1 equemene
      INTEGER            LDA, LDX, LDY, M, N, NB
11 1 equemene
*     ..
12 1 equemene
*     .. Array Arguments ..
13 1 equemene
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
14 1 equemene
     $                   TAUQ( * ), X( LDX, * ), Y( LDY, * )
15 1 equemene
*     ..
16 1 equemene
*
17 1 equemene
*  Purpose
18 1 equemene
*  =======
19 1 equemene
*
20 1 equemene
*  DLABRD reduces the first NB rows and columns of a real general
21 1 equemene
*  m by n matrix A to upper or lower bidiagonal form by an orthogonal
22 1 equemene
*  transformation Q' * A * P, and returns the matrices X and Y which
23 1 equemene
*  are needed to apply the transformation to the unreduced part of A.
24 1 equemene
*
25 1 equemene
*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
26 1 equemene
*  bidiagonal form.
27 1 equemene
*
28 1 equemene
*  This is an auxiliary routine called by DGEBRD
29 1 equemene
*
30 1 equemene
*  Arguments
31 1 equemene
*  =========
32 1 equemene
*
33 1 equemene
*  M       (input) INTEGER
34 1 equemene
*          The number of rows in the matrix A.
35 1 equemene
*
36 1 equemene
*  N       (input) INTEGER
37 1 equemene
*          The number of columns in the matrix A.
38 1 equemene
*
39 1 equemene
*  NB      (input) INTEGER
40 1 equemene
*          The number of leading rows and columns of A to be reduced.
41 1 equemene
*
42 1 equemene
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
43 1 equemene
*          On entry, the m by n general matrix to be reduced.
44 1 equemene
*          On exit, the first NB rows and columns of the matrix are
45 1 equemene
*          overwritten; the rest of the array is unchanged.
46 1 equemene
*          If m >= n, elements on and below the diagonal in the first NB
47 1 equemene
*            columns, with the array TAUQ, represent the orthogonal
48 1 equemene
*            matrix Q as a product of elementary reflectors; and
49 1 equemene
*            elements above the diagonal in the first NB rows, with the
50 1 equemene
*            array TAUP, represent the orthogonal matrix P as a product
51 1 equemene
*            of elementary reflectors.
52 1 equemene
*          If m < n, elements below the diagonal in the first NB
53 1 equemene
*            columns, with the array TAUQ, represent the orthogonal
54 1 equemene
*            matrix Q as a product of elementary reflectors, and
55 1 equemene
*            elements on and above the diagonal in the first NB rows,
56 1 equemene
*            with the array TAUP, represent the orthogonal matrix P as
57 1 equemene
*            a product of elementary reflectors.
58 1 equemene
*          See Further Details.
59 1 equemene
*
60 1 equemene
*  LDA     (input) INTEGER
61 1 equemene
*          The leading dimension of the array A.  LDA >= max(1,M).
62 1 equemene
*
63 1 equemene
*  D       (output) DOUBLE PRECISION array, dimension (NB)
64 1 equemene
*          The diagonal elements of the first NB rows and columns of
65 1 equemene
*          the reduced matrix.  D(i) = A(i,i).
66 1 equemene
*
67 1 equemene
*  E       (output) DOUBLE PRECISION array, dimension (NB)
68 1 equemene
*          The off-diagonal elements of the first NB rows and columns of
69 1 equemene
*          the reduced matrix.
70 1 equemene
*
71 1 equemene
*  TAUQ    (output) DOUBLE PRECISION array dimension (NB)
72 1 equemene
*          The scalar factors of the elementary reflectors which
73 1 equemene
*          represent the orthogonal matrix Q. See Further Details.
74 1 equemene
*
75 1 equemene
*  TAUP    (output) DOUBLE PRECISION array, dimension (NB)
76 1 equemene
*          The scalar factors of the elementary reflectors which
77 1 equemene
*          represent the orthogonal matrix P. See Further Details.
78 1 equemene
*
79 1 equemene
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)
80 1 equemene
*          The m-by-nb matrix X required to update the unreduced part
81 1 equemene
*          of A.
82 1 equemene
*
83 1 equemene
*  LDX     (input) INTEGER
84 1 equemene
*          The leading dimension of the array X. LDX >= M.
85 1 equemene
*
86 1 equemene
*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
87 1 equemene
*          The n-by-nb matrix Y required to update the unreduced part
88 1 equemene
*          of A.
89 1 equemene
*
90 1 equemene
*  LDY     (input) INTEGER
91 1 equemene
*          The leading dimension of the array Y. LDY >= N.
92 1 equemene
*
93 1 equemene
*  Further Details
94 1 equemene
*  ===============
95 1 equemene
*
96 1 equemene
*  The matrices Q and P are represented as products of elementary
97 1 equemene
*  reflectors:
98 1 equemene
*
99 1 equemene
*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
100 1 equemene
*
101 1 equemene
*  Each H(i) and G(i) has the form:
102 1 equemene
*
103 1 equemene
*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
104 1 equemene
*
105 1 equemene
*  where tauq and taup are real scalars, and v and u are real vectors.
106 1 equemene
*
107 1 equemene
*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
108 1 equemene
*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
109 1 equemene
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
110 1 equemene
*
111 1 equemene
*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
112 1 equemene
*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
113 1 equemene
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
114 1 equemene
*
115 1 equemene
*  The elements of the vectors v and u together form the m-by-nb matrix
116 1 equemene
*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
117 1 equemene
*  the transformation to the unreduced part of the matrix, using a block
118 1 equemene
*  update of the form:  A := A - V*Y' - X*U'.
119 1 equemene
*
120 1 equemene
*  The contents of A on exit are illustrated by the following examples
121 1 equemene
*  with nb = 2:
122 1 equemene
*
123 1 equemene
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
124 1 equemene
*
125 1 equemene
*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
126 1 equemene
*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
127 1 equemene
*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
128 1 equemene
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
129 1 equemene
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
130 1 equemene
*    (  v1  v2  a   a   a  )
131 1 equemene
*
132 1 equemene
*  where a denotes an element of the original matrix which is unchanged,
133 1 equemene
*  vi denotes an element of the vector defining H(i), and ui an element
134 1 equemene
*  of the vector defining G(i).
135 1 equemene
*
136 1 equemene
*  =====================================================================
137 1 equemene
*
138 1 equemene
*     .. Parameters ..
139 1 equemene
      DOUBLE PRECISION   ZERO, ONE
140 1 equemene
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
141 1 equemene
*     ..
142 1 equemene
*     .. Local Scalars ..
143 1 equemene
      INTEGER            I
144 1 equemene
*     ..
145 1 equemene
*     .. External Subroutines ..
146 1 equemene
      EXTERNAL           DGEMV, DLARFG, DSCAL
147 1 equemene
*     ..
148 1 equemene
*     .. Intrinsic Functions ..
149 1 equemene
      INTRINSIC          MIN
150 1 equemene
*     ..
151 1 equemene
*     .. Executable Statements ..
152 1 equemene
*
153 1 equemene
*     Quick return if possible
154 1 equemene
*
155 1 equemene
      IF( M.LE.0 .OR. N.LE.0 )
156 1 equemene
     $   RETURN
157 1 equemene
*
158 1 equemene
      IF( M.GE.N ) THEN
159 1 equemene
*
160 1 equemene
*        Reduce to upper bidiagonal form
161 1 equemene
*
162 1 equemene
         DO 10 I = 1, NB
163 1 equemene
*
164 1 equemene
*           Update A(i:m,i)
165 1 equemene
*
166 1 equemene
            CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
167 1 equemene
     $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
168 1 equemene
            CALL DGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
169 1 equemene
     $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
170 1 equemene
*
171 1 equemene
*           Generate reflection Q(i) to annihilate A(i+1:m,i)
172 1 equemene
*
173 1 equemene
            CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
174 1 equemene
     $                   TAUQ( I ) )
175 1 equemene
            D( I ) = A( I, I )
176 1 equemene
            IF( I.LT.N ) THEN
177 1 equemene
               A( I, I ) = ONE
178 1 equemene
*
179 1 equemene
*              Compute Y(i+1:n,i)
180 1 equemene
*
181 1 equemene
               CALL DGEMV( 'Transpose', M-I+1, N-I, ONE, A( I, I+1 ),
182 1 equemene
     $                     LDA, A( I, I ), 1, ZERO, Y( I+1, I ), 1 )
183 1 equemene
               CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, A( I, 1 ), LDA,
184 1 equemene
     $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
185 1 equemene
               CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
186 1 equemene
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
187 1 equemene
               CALL DGEMV( 'Transpose', M-I+1, I-1, ONE, X( I, 1 ), LDX,
188 1 equemene
     $                     A( I, I ), 1, ZERO, Y( 1, I ), 1 )
189 1 equemene
               CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
190 1 equemene
     $                     LDA, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
191 1 equemene
               CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
192 1 equemene
*
193 1 equemene
*              Update A(i,i+1:n)
194 1 equemene
*
195 1 equemene
               CALL DGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
196 1 equemene
     $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
197 1 equemene
               CALL DGEMV( 'Transpose', I-1, N-I, -ONE, A( 1, I+1 ),
198 1 equemene
     $                     LDA, X( I, 1 ), LDX, ONE, A( I, I+1 ), LDA )
199 1 equemene
*
200 1 equemene
*              Generate reflection P(i) to annihilate A(i,i+2:n)
201 1 equemene
*
202 1 equemene
               CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
203 1 equemene
     $                      LDA, TAUP( I ) )
204 1 equemene
               E( I ) = A( I, I+1 )
205 1 equemene
               A( I, I+1 ) = ONE
206 1 equemene
*
207 1 equemene
*              Compute X(i+1:m,i)
208 1 equemene
*
209 1 equemene
               CALL DGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
210 1 equemene
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
211 1 equemene
               CALL DGEMV( 'Transpose', N-I, I, ONE, Y( I+1, 1 ), LDY,
212 1 equemene
     $                     A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
213 1 equemene
               CALL DGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
214 1 equemene
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
215 1 equemene
               CALL DGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
216 1 equemene
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
217 1 equemene
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
218 1 equemene
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
219 1 equemene
               CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
220 1 equemene
            END IF
221 1 equemene
   10    CONTINUE
222 1 equemene
      ELSE
223 1 equemene
*
224 1 equemene
*        Reduce to lower bidiagonal form
225 1 equemene
*
226 1 equemene
         DO 20 I = 1, NB
227 1 equemene
*
228 1 equemene
*           Update A(i,i:n)
229 1 equemene
*
230 1 equemene
            CALL DGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
231 1 equemene
     $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
232 1 equemene
            CALL DGEMV( 'Transpose', I-1, N-I+1, -ONE, A( 1, I ), LDA,
233 1 equemene
     $                  X( I, 1 ), LDX, ONE, A( I, I ), LDA )
234 1 equemene
*
235 1 equemene
*           Generate reflection P(i) to annihilate A(i,i+1:n)
236 1 equemene
*
237 1 equemene
            CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
238 1 equemene
     $                   TAUP( I ) )
239 1 equemene
            D( I ) = A( I, I )
240 1 equemene
            IF( I.LT.M ) THEN
241 1 equemene
               A( I, I ) = ONE
242 1 equemene
*
243 1 equemene
*              Compute X(i+1:m,i)
244 1 equemene
*
245 1 equemene
               CALL DGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
246 1 equemene
     $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
247 1 equemene
               CALL DGEMV( 'Transpose', N-I+1, I-1, ONE, Y( I, 1 ), LDY,
248 1 equemene
     $                     A( I, I ), LDA, ZERO, X( 1, I ), 1 )
249 1 equemene
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
250 1 equemene
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
251 1 equemene
               CALL DGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
252 1 equemene
     $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
253 1 equemene
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
254 1 equemene
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
255 1 equemene
               CALL DSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
256 1 equemene
*
257 1 equemene
*              Update A(i+1:m,i)
258 1 equemene
*
259 1 equemene
               CALL DGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
260 1 equemene
     $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
261 1 equemene
               CALL DGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
262 1 equemene
     $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
263 1 equemene
*
264 1 equemene
*              Generate reflection Q(i) to annihilate A(i+2:m,i)
265 1 equemene
*
266 1 equemene
               CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
267 1 equemene
     $                      TAUQ( I ) )
268 1 equemene
               E( I ) = A( I+1, I )
269 1 equemene
               A( I+1, I ) = ONE
270 1 equemene
*
271 1 equemene
*              Compute Y(i+1:n,i)
272 1 equemene
*
273 1 equemene
               CALL DGEMV( 'Transpose', M-I, N-I, ONE, A( I+1, I+1 ),
274 1 equemene
     $                     LDA, A( I+1, I ), 1, ZERO, Y( I+1, I ), 1 )
275 1 equemene
               CALL DGEMV( 'Transpose', M-I, I-1, ONE, A( I+1, 1 ), LDA,
276 1 equemene
     $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
277 1 equemene
               CALL DGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
278 1 equemene
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
279 1 equemene
               CALL DGEMV( 'Transpose', M-I, I, ONE, X( I+1, 1 ), LDX,
280 1 equemene
     $                     A( I+1, I ), 1, ZERO, Y( 1, I ), 1 )
281 1 equemene
               CALL DGEMV( 'Transpose', I, N-I, -ONE, A( 1, I+1 ), LDA,
282 1 equemene
     $                     Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
283 1 equemene
               CALL DSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
284 1 equemene
            END IF
285 1 equemene
   20    CONTINUE
286 1 equemene
      END IF
287 1 equemene
      RETURN
288 1 equemene
*
289 1 equemene
*     End of DLABRD
290 1 equemene
*
291 1 equemene
      END