Statistiques
| Révision :

root / src / blas / ztrsv.f @ 1

Historique | Voir | Annoter | Télécharger (10,04 ko)

1 1 equemene
      SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      INTEGER INCX,LDA,N
4 1 equemene
      CHARACTER DIAG,TRANS,UPLO
5 1 equemene
*     ..
6 1 equemene
*     .. Array Arguments ..
7 1 equemene
      DOUBLE COMPLEX A(LDA,*),X(*)
8 1 equemene
*     ..
9 1 equemene
*
10 1 equemene
*  Purpose
11 1 equemene
*  =======
12 1 equemene
*
13 1 equemene
*  ZTRSV  solves one of the systems of equations
14 1 equemene
*
15 1 equemene
*     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
16 1 equemene
*
17 1 equemene
*  where b and x are n element vectors and A is an n by n unit, or
18 1 equemene
*  non-unit, upper or lower triangular matrix.
19 1 equemene
*
20 1 equemene
*  No test for singularity or near-singularity is included in this
21 1 equemene
*  routine. Such tests must be performed before calling this routine.
22 1 equemene
*
23 1 equemene
*  Arguments
24 1 equemene
*  ==========
25 1 equemene
*
26 1 equemene
*  UPLO   - CHARACTER*1.
27 1 equemene
*           On entry, UPLO specifies whether the matrix is an upper or
28 1 equemene
*           lower triangular matrix as follows:
29 1 equemene
*
30 1 equemene
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
33 1 equemene
*
34 1 equemene
*           Unchanged on exit.
35 1 equemene
*
36 1 equemene
*  TRANS  - CHARACTER*1.
37 1 equemene
*           On entry, TRANS specifies the equations to be solved as
38 1 equemene
*           follows:
39 1 equemene
*
40 1 equemene
*              TRANS = 'N' or 'n'   A*x = b.
41 1 equemene
*
42 1 equemene
*              TRANS = 'T' or 't'   A'*x = b.
43 1 equemene
*
44 1 equemene
*              TRANS = 'C' or 'c'   conjg( A' )*x = b.
45 1 equemene
*
46 1 equemene
*           Unchanged on exit.
47 1 equemene
*
48 1 equemene
*  DIAG   - CHARACTER*1.
49 1 equemene
*           On entry, DIAG specifies whether or not A is unit
50 1 equemene
*           triangular as follows:
51 1 equemene
*
52 1 equemene
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
53 1 equemene
*
54 1 equemene
*              DIAG = 'N' or 'n'   A is not assumed to be unit
55 1 equemene
*                                  triangular.
56 1 equemene
*
57 1 equemene
*           Unchanged on exit.
58 1 equemene
*
59 1 equemene
*  N      - INTEGER.
60 1 equemene
*           On entry, N specifies the order of the matrix A.
61 1 equemene
*           N must be at least zero.
62 1 equemene
*           Unchanged on exit.
63 1 equemene
*
64 1 equemene
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
65 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
66 1 equemene
*           upper triangular part of the array A must contain the upper
67 1 equemene
*           triangular matrix and the strictly lower triangular part of
68 1 equemene
*           A is not referenced.
69 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading n by n
70 1 equemene
*           lower triangular part of the array A must contain the lower
71 1 equemene
*           triangular matrix and the strictly upper triangular part of
72 1 equemene
*           A is not referenced.
73 1 equemene
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
74 1 equemene
*           A are not referenced either, but are assumed to be unity.
75 1 equemene
*           Unchanged on exit.
76 1 equemene
*
77 1 equemene
*  LDA    - INTEGER.
78 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
79 1 equemene
*           in the calling (sub) program. LDA must be at least
80 1 equemene
*           max( 1, n ).
81 1 equemene
*           Unchanged on exit.
82 1 equemene
*
83 1 equemene
*  X      - COMPLEX*16       array of dimension at least
84 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
85 1 equemene
*           Before entry, the incremented array X must contain the n
86 1 equemene
*           element right-hand side vector b. On exit, X is overwritten
87 1 equemene
*           with the solution vector x.
88 1 equemene
*
89 1 equemene
*  INCX   - INTEGER.
90 1 equemene
*           On entry, INCX specifies the increment for the elements of
91 1 equemene
*           X. INCX must not be zero.
92 1 equemene
*           Unchanged on exit.
93 1 equemene
*
94 1 equemene
*
95 1 equemene
*  Level 2 Blas routine.
96 1 equemene
*
97 1 equemene
*  -- Written on 22-October-1986.
98 1 equemene
*     Jack Dongarra, Argonne National Lab.
99 1 equemene
*     Jeremy Du Croz, Nag Central Office.
100 1 equemene
*     Sven Hammarling, Nag Central Office.
101 1 equemene
*     Richard Hanson, Sandia National Labs.
102 1 equemene
*
103 1 equemene
*
104 1 equemene
*     .. Parameters ..
105 1 equemene
      DOUBLE COMPLEX ZERO
106 1 equemene
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
107 1 equemene
*     ..
108 1 equemene
*     .. Local Scalars ..
109 1 equemene
      DOUBLE COMPLEX TEMP
110 1 equemene
      INTEGER I,INFO,IX,J,JX,KX
111 1 equemene
      LOGICAL NOCONJ,NOUNIT
112 1 equemene
*     ..
113 1 equemene
*     .. External Functions ..
114 1 equemene
      LOGICAL LSAME
115 1 equemene
      EXTERNAL LSAME
116 1 equemene
*     ..
117 1 equemene
*     .. External Subroutines ..
118 1 equemene
      EXTERNAL XERBLA
119 1 equemene
*     ..
120 1 equemene
*     .. Intrinsic Functions ..
121 1 equemene
      INTRINSIC DCONJG,MAX
122 1 equemene
*     ..
123 1 equemene
*
124 1 equemene
*     Test the input parameters.
125 1 equemene
*
126 1 equemene
      INFO = 0
127 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
128 1 equemene
          INFO = 1
129 1 equemene
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
130 1 equemene
     +         .NOT.LSAME(TRANS,'C')) THEN
131 1 equemene
          INFO = 2
132 1 equemene
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
133 1 equemene
          INFO = 3
134 1 equemene
      ELSE IF (N.LT.0) THEN
135 1 equemene
          INFO = 4
136 1 equemene
      ELSE IF (LDA.LT.MAX(1,N)) THEN
137 1 equemene
          INFO = 6
138 1 equemene
      ELSE IF (INCX.EQ.0) THEN
139 1 equemene
          INFO = 8
140 1 equemene
      END IF
141 1 equemene
      IF (INFO.NE.0) THEN
142 1 equemene
          CALL XERBLA('ZTRSV ',INFO)
143 1 equemene
          RETURN
144 1 equemene
      END IF
145 1 equemene
*
146 1 equemene
*     Quick return if possible.
147 1 equemene
*
148 1 equemene
      IF (N.EQ.0) RETURN
149 1 equemene
*
150 1 equemene
      NOCONJ = LSAME(TRANS,'T')
151 1 equemene
      NOUNIT = LSAME(DIAG,'N')
152 1 equemene
*
153 1 equemene
*     Set up the start point in X if the increment is not unity. This
154 1 equemene
*     will be  ( N - 1 )*INCX  too small for descending loops.
155 1 equemene
*
156 1 equemene
      IF (INCX.LE.0) THEN
157 1 equemene
          KX = 1 - (N-1)*INCX
158 1 equemene
      ELSE IF (INCX.NE.1) THEN
159 1 equemene
          KX = 1
160 1 equemene
      END IF
161 1 equemene
*
162 1 equemene
*     Start the operations. In this version the elements of A are
163 1 equemene
*     accessed sequentially with one pass through A.
164 1 equemene
*
165 1 equemene
      IF (LSAME(TRANS,'N')) THEN
166 1 equemene
*
167 1 equemene
*        Form  x := inv( A )*x.
168 1 equemene
*
169 1 equemene
          IF (LSAME(UPLO,'U')) THEN
170 1 equemene
              IF (INCX.EQ.1) THEN
171 1 equemene
                  DO 20 J = N,1,-1
172 1 equemene
                      IF (X(J).NE.ZERO) THEN
173 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
174 1 equemene
                          TEMP = X(J)
175 1 equemene
                          DO 10 I = J - 1,1,-1
176 1 equemene
                              X(I) = X(I) - TEMP*A(I,J)
177 1 equemene
   10                     CONTINUE
178 1 equemene
                      END IF
179 1 equemene
   20             CONTINUE
180 1 equemene
              ELSE
181 1 equemene
                  JX = KX + (N-1)*INCX
182 1 equemene
                  DO 40 J = N,1,-1
183 1 equemene
                      IF (X(JX).NE.ZERO) THEN
184 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
185 1 equemene
                          TEMP = X(JX)
186 1 equemene
                          IX = JX
187 1 equemene
                          DO 30 I = J - 1,1,-1
188 1 equemene
                              IX = IX - INCX
189 1 equemene
                              X(IX) = X(IX) - TEMP*A(I,J)
190 1 equemene
   30                     CONTINUE
191 1 equemene
                      END IF
192 1 equemene
                      JX = JX - INCX
193 1 equemene
   40             CONTINUE
194 1 equemene
              END IF
195 1 equemene
          ELSE
196 1 equemene
              IF (INCX.EQ.1) THEN
197 1 equemene
                  DO 60 J = 1,N
198 1 equemene
                      IF (X(J).NE.ZERO) THEN
199 1 equemene
                          IF (NOUNIT) X(J) = X(J)/A(J,J)
200 1 equemene
                          TEMP = X(J)
201 1 equemene
                          DO 50 I = J + 1,N
202 1 equemene
                              X(I) = X(I) - TEMP*A(I,J)
203 1 equemene
   50                     CONTINUE
204 1 equemene
                      END IF
205 1 equemene
   60             CONTINUE
206 1 equemene
              ELSE
207 1 equemene
                  JX = KX
208 1 equemene
                  DO 80 J = 1,N
209 1 equemene
                      IF (X(JX).NE.ZERO) THEN
210 1 equemene
                          IF (NOUNIT) X(JX) = X(JX)/A(J,J)
211 1 equemene
                          TEMP = X(JX)
212 1 equemene
                          IX = JX
213 1 equemene
                          DO 70 I = J + 1,N
214 1 equemene
                              IX = IX + INCX
215 1 equemene
                              X(IX) = X(IX) - TEMP*A(I,J)
216 1 equemene
   70                     CONTINUE
217 1 equemene
                      END IF
218 1 equemene
                      JX = JX + INCX
219 1 equemene
   80             CONTINUE
220 1 equemene
              END IF
221 1 equemene
          END IF
222 1 equemene
      ELSE
223 1 equemene
*
224 1 equemene
*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
225 1 equemene
*
226 1 equemene
          IF (LSAME(UPLO,'U')) THEN
227 1 equemene
              IF (INCX.EQ.1) THEN
228 1 equemene
                  DO 110 J = 1,N
229 1 equemene
                      TEMP = X(J)
230 1 equemene
                      IF (NOCONJ) THEN
231 1 equemene
                          DO 90 I = 1,J - 1
232 1 equemene
                              TEMP = TEMP - A(I,J)*X(I)
233 1 equemene
   90                     CONTINUE
234 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
235 1 equemene
                      ELSE
236 1 equemene
                          DO 100 I = 1,J - 1
237 1 equemene
                              TEMP = TEMP - DCONJG(A(I,J))*X(I)
238 1 equemene
  100                     CONTINUE
239 1 equemene
                          IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
240 1 equemene
                      END IF
241 1 equemene
                      X(J) = TEMP
242 1 equemene
  110             CONTINUE
243 1 equemene
              ELSE
244 1 equemene
                  JX = KX
245 1 equemene
                  DO 140 J = 1,N
246 1 equemene
                      IX = KX
247 1 equemene
                      TEMP = X(JX)
248 1 equemene
                      IF (NOCONJ) THEN
249 1 equemene
                          DO 120 I = 1,J - 1
250 1 equemene
                              TEMP = TEMP - A(I,J)*X(IX)
251 1 equemene
                              IX = IX + INCX
252 1 equemene
  120                     CONTINUE
253 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
254 1 equemene
                      ELSE
255 1 equemene
                          DO 130 I = 1,J - 1
256 1 equemene
                              TEMP = TEMP - DCONJG(A(I,J))*X(IX)
257 1 equemene
                              IX = IX + INCX
258 1 equemene
  130                     CONTINUE
259 1 equemene
                          IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
260 1 equemene
                      END IF
261 1 equemene
                      X(JX) = TEMP
262 1 equemene
                      JX = JX + INCX
263 1 equemene
  140             CONTINUE
264 1 equemene
              END IF
265 1 equemene
          ELSE
266 1 equemene
              IF (INCX.EQ.1) THEN
267 1 equemene
                  DO 170 J = N,1,-1
268 1 equemene
                      TEMP = X(J)
269 1 equemene
                      IF (NOCONJ) THEN
270 1 equemene
                          DO 150 I = N,J + 1,-1
271 1 equemene
                              TEMP = TEMP - A(I,J)*X(I)
272 1 equemene
  150                     CONTINUE
273 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
274 1 equemene
                      ELSE
275 1 equemene
                          DO 160 I = N,J + 1,-1
276 1 equemene
                              TEMP = TEMP - DCONJG(A(I,J))*X(I)
277 1 equemene
  160                     CONTINUE
278 1 equemene
                          IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
279 1 equemene
                      END IF
280 1 equemene
                      X(J) = TEMP
281 1 equemene
  170             CONTINUE
282 1 equemene
              ELSE
283 1 equemene
                  KX = KX + (N-1)*INCX
284 1 equemene
                  JX = KX
285 1 equemene
                  DO 200 J = N,1,-1
286 1 equemene
                      IX = KX
287 1 equemene
                      TEMP = X(JX)
288 1 equemene
                      IF (NOCONJ) THEN
289 1 equemene
                          DO 180 I = N,J + 1,-1
290 1 equemene
                              TEMP = TEMP - A(I,J)*X(IX)
291 1 equemene
                              IX = IX - INCX
292 1 equemene
  180                     CONTINUE
293 1 equemene
                          IF (NOUNIT) TEMP = TEMP/A(J,J)
294 1 equemene
                      ELSE
295 1 equemene
                          DO 190 I = N,J + 1,-1
296 1 equemene
                              TEMP = TEMP - DCONJG(A(I,J))*X(IX)
297 1 equemene
                              IX = IX - INCX
298 1 equemene
  190                     CONTINUE
299 1 equemene
                          IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J))
300 1 equemene
                      END IF
301 1 equemene
                      X(JX) = TEMP
302 1 equemene
                      JX = JX - INCX
303 1 equemene
  200             CONTINUE
304 1 equemene
              END IF
305 1 equemene
          END IF
306 1 equemene
      END IF
307 1 equemene
*
308 1 equemene
      RETURN
309 1 equemene
*
310 1 equemene
*     End of ZTRSV .
311 1 equemene
*
312 1 equemene
      END