Statistiques
| Révision :

root / src / blas / zhpr2.f @ 1

Historique | Voir | Annoter | Télécharger (8,05 ko)

1 1 equemene
      SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      DOUBLE COMPLEX ALPHA
4 1 equemene
      INTEGER INCX,INCY,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      DOUBLE COMPLEX AP(*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  ZHPR2  performs the hermitian rank 2 operation
15 1 equemene
*
16 1 equemene
*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
17 1 equemene
*
18 1 equemene
*  where alpha is a scalar, x and y are n element vectors and A is an
19 1 equemene
*  n by n hermitian matrix, supplied in packed form.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the matrix A is supplied in the packed
27 1 equemene
*           array AP as follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   The upper triangular part of A is
30 1 equemene
*                                  supplied in AP.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   The lower triangular part of A is
33 1 equemene
*                                  supplied in AP.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - COMPLEX*16      .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  X      - COMPLEX*16       array of dimension at least
47 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 equemene
*           Before entry, the incremented array X must contain the n
49 1 equemene
*           element vector x.
50 1 equemene
*           Unchanged on exit.
51 1 equemene
*
52 1 equemene
*  INCX   - INTEGER.
53 1 equemene
*           On entry, INCX specifies the increment for the elements of
54 1 equemene
*           X. INCX must not be zero.
55 1 equemene
*           Unchanged on exit.
56 1 equemene
*
57 1 equemene
*  Y      - COMPLEX*16       array of dimension at least
58 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
59 1 equemene
*           Before entry, the incremented array Y must contain the n
60 1 equemene
*           element vector y.
61 1 equemene
*           Unchanged on exit.
62 1 equemene
*
63 1 equemene
*  INCY   - INTEGER.
64 1 equemene
*           On entry, INCY specifies the increment for the elements of
65 1 equemene
*           Y. INCY must not be zero.
66 1 equemene
*           Unchanged on exit.
67 1 equemene
*
68 1 equemene
*  AP     - COMPLEX*16       array of DIMENSION at least
69 1 equemene
*           ( ( n*( n + 1 ) )/2 ).
70 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the array AP must
71 1 equemene
*           contain the upper triangular part of the hermitian matrix
72 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
73 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
74 1 equemene
*           and a( 2, 2 ) respectively, and so on. On exit, the array
75 1 equemene
*           AP is overwritten by the upper triangular part of the
76 1 equemene
*           updated matrix.
77 1 equemene
*           Before entry with UPLO = 'L' or 'l', the array AP must
78 1 equemene
*           contain the lower triangular part of the hermitian matrix
79 1 equemene
*           packed sequentially, column by column, so that AP( 1 )
80 1 equemene
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
81 1 equemene
*           and a( 3, 1 ) respectively, and so on. On exit, the array
82 1 equemene
*           AP is overwritten by the lower triangular part of the
83 1 equemene
*           updated matrix.
84 1 equemene
*           Note that the imaginary parts of the diagonal elements need
85 1 equemene
*           not be set, they are assumed to be zero, and on exit they
86 1 equemene
*           are set to zero.
87 1 equemene
*
88 1 equemene
*
89 1 equemene
*  Level 2 Blas routine.
90 1 equemene
*
91 1 equemene
*  -- Written on 22-October-1986.
92 1 equemene
*     Jack Dongarra, Argonne National Lab.
93 1 equemene
*     Jeremy Du Croz, Nag Central Office.
94 1 equemene
*     Sven Hammarling, Nag Central Office.
95 1 equemene
*     Richard Hanson, Sandia National Labs.
96 1 equemene
*
97 1 equemene
*
98 1 equemene
*     .. Parameters ..
99 1 equemene
      DOUBLE COMPLEX ZERO
100 1 equemene
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
101 1 equemene
*     ..
102 1 equemene
*     .. Local Scalars ..
103 1 equemene
      DOUBLE COMPLEX TEMP1,TEMP2
104 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
105 1 equemene
*     ..
106 1 equemene
*     .. External Functions ..
107 1 equemene
      LOGICAL LSAME
108 1 equemene
      EXTERNAL LSAME
109 1 equemene
*     ..
110 1 equemene
*     .. External Subroutines ..
111 1 equemene
      EXTERNAL XERBLA
112 1 equemene
*     ..
113 1 equemene
*     .. Intrinsic Functions ..
114 1 equemene
      INTRINSIC DBLE,DCONJG
115 1 equemene
*     ..
116 1 equemene
*
117 1 equemene
*     Test the input parameters.
118 1 equemene
*
119 1 equemene
      INFO = 0
120 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
121 1 equemene
          INFO = 1
122 1 equemene
      ELSE IF (N.LT.0) THEN
123 1 equemene
          INFO = 2
124 1 equemene
      ELSE IF (INCX.EQ.0) THEN
125 1 equemene
          INFO = 5
126 1 equemene
      ELSE IF (INCY.EQ.0) THEN
127 1 equemene
          INFO = 7
128 1 equemene
      END IF
129 1 equemene
      IF (INFO.NE.0) THEN
130 1 equemene
          CALL XERBLA('ZHPR2 ',INFO)
131 1 equemene
          RETURN
132 1 equemene
      END IF
133 1 equemene
*
134 1 equemene
*     Quick return if possible.
135 1 equemene
*
136 1 equemene
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
137 1 equemene
*
138 1 equemene
*     Set up the start points in X and Y if the increments are not both
139 1 equemene
*     unity.
140 1 equemene
*
141 1 equemene
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
142 1 equemene
          IF (INCX.GT.0) THEN
143 1 equemene
              KX = 1
144 1 equemene
          ELSE
145 1 equemene
              KX = 1 - (N-1)*INCX
146 1 equemene
          END IF
147 1 equemene
          IF (INCY.GT.0) THEN
148 1 equemene
              KY = 1
149 1 equemene
          ELSE
150 1 equemene
              KY = 1 - (N-1)*INCY
151 1 equemene
          END IF
152 1 equemene
          JX = KX
153 1 equemene
          JY = KY
154 1 equemene
      END IF
155 1 equemene
*
156 1 equemene
*     Start the operations. In this version the elements of the array AP
157 1 equemene
*     are accessed sequentially with one pass through AP.
158 1 equemene
*
159 1 equemene
      KK = 1
160 1 equemene
      IF (LSAME(UPLO,'U')) THEN
161 1 equemene
*
162 1 equemene
*        Form  A  when upper triangle is stored in AP.
163 1 equemene
*
164 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
165 1 equemene
              DO 20 J = 1,N
166 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
167 1 equemene
                      TEMP1 = ALPHA*DCONJG(Y(J))
168 1 equemene
                      TEMP2 = DCONJG(ALPHA*X(J))
169 1 equemene
                      K = KK
170 1 equemene
                      DO 10 I = 1,J - 1
171 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
172 1 equemene
                          K = K + 1
173 1 equemene
   10                 CONTINUE
174 1 equemene
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
175 1 equemene
     +                             DBLE(X(J)*TEMP1+Y(J)*TEMP2)
176 1 equemene
                  ELSE
177 1 equemene
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
178 1 equemene
                  END IF
179 1 equemene
                  KK = KK + J
180 1 equemene
   20         CONTINUE
181 1 equemene
          ELSE
182 1 equemene
              DO 40 J = 1,N
183 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
184 1 equemene
                      TEMP1 = ALPHA*DCONJG(Y(JY))
185 1 equemene
                      TEMP2 = DCONJG(ALPHA*X(JX))
186 1 equemene
                      IX = KX
187 1 equemene
                      IY = KY
188 1 equemene
                      DO 30 K = KK,KK + J - 2
189 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
190 1 equemene
                          IX = IX + INCX
191 1 equemene
                          IY = IY + INCY
192 1 equemene
   30                 CONTINUE
193 1 equemene
                      AP(KK+J-1) = DBLE(AP(KK+J-1)) +
194 1 equemene
     +                             DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
195 1 equemene
                  ELSE
196 1 equemene
                      AP(KK+J-1) = DBLE(AP(KK+J-1))
197 1 equemene
                  END IF
198 1 equemene
                  JX = JX + INCX
199 1 equemene
                  JY = JY + INCY
200 1 equemene
                  KK = KK + J
201 1 equemene
   40         CONTINUE
202 1 equemene
          END IF
203 1 equemene
      ELSE
204 1 equemene
*
205 1 equemene
*        Form  A  when lower triangle is stored in AP.
206 1 equemene
*
207 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
208 1 equemene
              DO 60 J = 1,N
209 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
210 1 equemene
                      TEMP1 = ALPHA*DCONJG(Y(J))
211 1 equemene
                      TEMP2 = DCONJG(ALPHA*X(J))
212 1 equemene
                      AP(KK) = DBLE(AP(KK)) +
213 1 equemene
     +                         DBLE(X(J)*TEMP1+Y(J)*TEMP2)
214 1 equemene
                      K = KK + 1
215 1 equemene
                      DO 50 I = J + 1,N
216 1 equemene
                          AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
217 1 equemene
                          K = K + 1
218 1 equemene
   50                 CONTINUE
219 1 equemene
                  ELSE
220 1 equemene
                      AP(KK) = DBLE(AP(KK))
221 1 equemene
                  END IF
222 1 equemene
                  KK = KK + N - J + 1
223 1 equemene
   60         CONTINUE
224 1 equemene
          ELSE
225 1 equemene
              DO 80 J = 1,N
226 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
227 1 equemene
                      TEMP1 = ALPHA*DCONJG(Y(JY))
228 1 equemene
                      TEMP2 = DCONJG(ALPHA*X(JX))
229 1 equemene
                      AP(KK) = DBLE(AP(KK)) +
230 1 equemene
     +                         DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
231 1 equemene
                      IX = JX
232 1 equemene
                      IY = JY
233 1 equemene
                      DO 70 K = KK + 1,KK + N - J
234 1 equemene
                          IX = IX + INCX
235 1 equemene
                          IY = IY + INCY
236 1 equemene
                          AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
237 1 equemene
   70                 CONTINUE
238 1 equemene
                  ELSE
239 1 equemene
                      AP(KK) = DBLE(AP(KK))
240 1 equemene
                  END IF
241 1 equemene
                  JX = JX + INCX
242 1 equemene
                  JY = JY + INCY
243 1 equemene
                  KK = KK + N - J + 1
244 1 equemene
   80         CONTINUE
245 1 equemene
          END IF
246 1 equemene
      END IF
247 1 equemene
*
248 1 equemene
      RETURN
249 1 equemene
*
250 1 equemene
*     End of ZHPR2 .
251 1 equemene
*
252 1 equemene
      END