root / src / blas / chpr.f @ 1
Historique | Voir | Annoter | Télécharger (6,58 ko)
1 | 1 | equemene | SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP) |
---|---|---|---|
2 | 1 | equemene | * .. Scalar Arguments .. |
3 | 1 | equemene | REAL ALPHA |
4 | 1 | equemene | INTEGER INCX,N |
5 | 1 | equemene | CHARACTER UPLO |
6 | 1 | equemene | * .. |
7 | 1 | equemene | * .. Array Arguments .. |
8 | 1 | equemene | COMPLEX AP(*),X(*) |
9 | 1 | equemene | * .. |
10 | 1 | equemene | * |
11 | 1 | equemene | * Purpose |
12 | 1 | equemene | * ======= |
13 | 1 | equemene | * |
14 | 1 | equemene | * CHPR performs the hermitian rank 1 operation |
15 | 1 | equemene | * |
16 | 1 | equemene | * A := alpha*x*conjg( x' ) + A, |
17 | 1 | equemene | * |
18 | 1 | equemene | * where alpha is a real scalar, x is an n element vector and A is an |
19 | 1 | equemene | * n by n hermitian matrix, supplied in packed form. |
20 | 1 | equemene | * |
21 | 1 | equemene | * Arguments |
22 | 1 | equemene | * ========== |
23 | 1 | equemene | * |
24 | 1 | equemene | * UPLO - CHARACTER*1. |
25 | 1 | equemene | * On entry, UPLO specifies whether the upper or lower |
26 | 1 | equemene | * triangular part of the matrix A is supplied in the packed |
27 | 1 | equemene | * array AP as follows: |
28 | 1 | equemene | * |
29 | 1 | equemene | * UPLO = 'U' or 'u' The upper triangular part of A is |
30 | 1 | equemene | * supplied in AP. |
31 | 1 | equemene | * |
32 | 1 | equemene | * UPLO = 'L' or 'l' The lower triangular part of A is |
33 | 1 | equemene | * supplied in AP. |
34 | 1 | equemene | * |
35 | 1 | equemene | * Unchanged on exit. |
36 | 1 | equemene | * |
37 | 1 | equemene | * N - INTEGER. |
38 | 1 | equemene | * On entry, N specifies the order of the matrix A. |
39 | 1 | equemene | * N must be at least zero. |
40 | 1 | equemene | * Unchanged on exit. |
41 | 1 | equemene | * |
42 | 1 | equemene | * ALPHA - REAL . |
43 | 1 | equemene | * On entry, ALPHA specifies the scalar alpha. |
44 | 1 | equemene | * Unchanged on exit. |
45 | 1 | equemene | * |
46 | 1 | equemene | * X - COMPLEX array of dimension at least |
47 | 1 | equemene | * ( 1 + ( n - 1 )*abs( INCX ) ). |
48 | 1 | equemene | * Before entry, the incremented array X must contain the n |
49 | 1 | equemene | * element vector x. |
50 | 1 | equemene | * Unchanged on exit. |
51 | 1 | equemene | * |
52 | 1 | equemene | * INCX - INTEGER. |
53 | 1 | equemene | * On entry, INCX specifies the increment for the elements of |
54 | 1 | equemene | * X. INCX must not be zero. |
55 | 1 | equemene | * Unchanged on exit. |
56 | 1 | equemene | * |
57 | 1 | equemene | * AP - COMPLEX array of DIMENSION at least |
58 | 1 | equemene | * ( ( n*( n + 1 ) )/2 ). |
59 | 1 | equemene | * Before entry with UPLO = 'U' or 'u', the array AP must |
60 | 1 | equemene | * contain the upper triangular part of the hermitian matrix |
61 | 1 | equemene | * packed sequentially, column by column, so that AP( 1 ) |
62 | 1 | equemene | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
63 | 1 | equemene | * and a( 2, 2 ) respectively, and so on. On exit, the array |
64 | 1 | equemene | * AP is overwritten by the upper triangular part of the |
65 | 1 | equemene | * updated matrix. |
66 | 1 | equemene | * Before entry with UPLO = 'L' or 'l', the array AP must |
67 | 1 | equemene | * contain the lower triangular part of the hermitian matrix |
68 | 1 | equemene | * packed sequentially, column by column, so that AP( 1 ) |
69 | 1 | equemene | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
70 | 1 | equemene | * and a( 3, 1 ) respectively, and so on. On exit, the array |
71 | 1 | equemene | * AP is overwritten by the lower triangular part of the |
72 | 1 | equemene | * updated matrix. |
73 | 1 | equemene | * Note that the imaginary parts of the diagonal elements need |
74 | 1 | equemene | * not be set, they are assumed to be zero, and on exit they |
75 | 1 | equemene | * are set to zero. |
76 | 1 | equemene | * |
77 | 1 | equemene | * |
78 | 1 | equemene | * Level 2 Blas routine. |
79 | 1 | equemene | * |
80 | 1 | equemene | * -- Written on 22-October-1986. |
81 | 1 | equemene | * Jack Dongarra, Argonne National Lab. |
82 | 1 | equemene | * Jeremy Du Croz, Nag Central Office. |
83 | 1 | equemene | * Sven Hammarling, Nag Central Office. |
84 | 1 | equemene | * Richard Hanson, Sandia National Labs. |
85 | 1 | equemene | * |
86 | 1 | equemene | * |
87 | 1 | equemene | * .. Parameters .. |
88 | 1 | equemene | COMPLEX ZERO |
89 | 1 | equemene | PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
90 | 1 | equemene | * .. |
91 | 1 | equemene | * .. Local Scalars .. |
92 | 1 | equemene | COMPLEX TEMP |
93 | 1 | equemene | INTEGER I,INFO,IX,J,JX,K,KK,KX |
94 | 1 | equemene | * .. |
95 | 1 | equemene | * .. External Functions .. |
96 | 1 | equemene | LOGICAL LSAME |
97 | 1 | equemene | EXTERNAL LSAME |
98 | 1 | equemene | * .. |
99 | 1 | equemene | * .. External Subroutines .. |
100 | 1 | equemene | EXTERNAL XERBLA |
101 | 1 | equemene | * .. |
102 | 1 | equemene | * .. Intrinsic Functions .. |
103 | 1 | equemene | INTRINSIC CONJG,REAL |
104 | 1 | equemene | * .. |
105 | 1 | equemene | * |
106 | 1 | equemene | * Test the input parameters. |
107 | 1 | equemene | * |
108 | 1 | equemene | INFO = 0 |
109 | 1 | equemene | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
110 | 1 | equemene | INFO = 1 |
111 | 1 | equemene | ELSE IF (N.LT.0) THEN |
112 | 1 | equemene | INFO = 2 |
113 | 1 | equemene | ELSE IF (INCX.EQ.0) THEN |
114 | 1 | equemene | INFO = 5 |
115 | 1 | equemene | END IF |
116 | 1 | equemene | IF (INFO.NE.0) THEN |
117 | 1 | equemene | CALL XERBLA('CHPR ',INFO) |
118 | 1 | equemene | RETURN |
119 | 1 | equemene | END IF |
120 | 1 | equemene | * |
121 | 1 | equemene | * Quick return if possible. |
122 | 1 | equemene | * |
123 | 1 | equemene | IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN |
124 | 1 | equemene | * |
125 | 1 | equemene | * Set the start point in X if the increment is not unity. |
126 | 1 | equemene | * |
127 | 1 | equemene | IF (INCX.LE.0) THEN |
128 | 1 | equemene | KX = 1 - (N-1)*INCX |
129 | 1 | equemene | ELSE IF (INCX.NE.1) THEN |
130 | 1 | equemene | KX = 1 |
131 | 1 | equemene | END IF |
132 | 1 | equemene | * |
133 | 1 | equemene | * Start the operations. In this version the elements of the array AP |
134 | 1 | equemene | * are accessed sequentially with one pass through AP. |
135 | 1 | equemene | * |
136 | 1 | equemene | KK = 1 |
137 | 1 | equemene | IF (LSAME(UPLO,'U')) THEN |
138 | 1 | equemene | * |
139 | 1 | equemene | * Form A when upper triangle is stored in AP. |
140 | 1 | equemene | * |
141 | 1 | equemene | IF (INCX.EQ.1) THEN |
142 | 1 | equemene | DO 20 J = 1,N |
143 | 1 | equemene | IF (X(J).NE.ZERO) THEN |
144 | 1 | equemene | TEMP = ALPHA*CONJG(X(J)) |
145 | 1 | equemene | K = KK |
146 | 1 | equemene | DO 10 I = 1,J - 1 |
147 | 1 | equemene | AP(K) = AP(K) + X(I)*TEMP |
148 | 1 | equemene | K = K + 1 |
149 | 1 | equemene | 10 CONTINUE |
150 | 1 | equemene | AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP) |
151 | 1 | equemene | ELSE |
152 | 1 | equemene | AP(KK+J-1) = REAL(AP(KK+J-1)) |
153 | 1 | equemene | END IF |
154 | 1 | equemene | KK = KK + J |
155 | 1 | equemene | 20 CONTINUE |
156 | 1 | equemene | ELSE |
157 | 1 | equemene | JX = KX |
158 | 1 | equemene | DO 40 J = 1,N |
159 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
160 | 1 | equemene | TEMP = ALPHA*CONJG(X(JX)) |
161 | 1 | equemene | IX = KX |
162 | 1 | equemene | DO 30 K = KK,KK + J - 2 |
163 | 1 | equemene | AP(K) = AP(K) + X(IX)*TEMP |
164 | 1 | equemene | IX = IX + INCX |
165 | 1 | equemene | 30 CONTINUE |
166 | 1 | equemene | AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP) |
167 | 1 | equemene | ELSE |
168 | 1 | equemene | AP(KK+J-1) = REAL(AP(KK+J-1)) |
169 | 1 | equemene | END IF |
170 | 1 | equemene | JX = JX + INCX |
171 | 1 | equemene | KK = KK + J |
172 | 1 | equemene | 40 CONTINUE |
173 | 1 | equemene | END IF |
174 | 1 | equemene | ELSE |
175 | 1 | equemene | * |
176 | 1 | equemene | * Form A when lower triangle is stored in AP. |
177 | 1 | equemene | * |
178 | 1 | equemene | IF (INCX.EQ.1) THEN |
179 | 1 | equemene | DO 60 J = 1,N |
180 | 1 | equemene | IF (X(J).NE.ZERO) THEN |
181 | 1 | equemene | TEMP = ALPHA*CONJG(X(J)) |
182 | 1 | equemene | AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J)) |
183 | 1 | equemene | K = KK + 1 |
184 | 1 | equemene | DO 50 I = J + 1,N |
185 | 1 | equemene | AP(K) = AP(K) + X(I)*TEMP |
186 | 1 | equemene | K = K + 1 |
187 | 1 | equemene | 50 CONTINUE |
188 | 1 | equemene | ELSE |
189 | 1 | equemene | AP(KK) = REAL(AP(KK)) |
190 | 1 | equemene | END IF |
191 | 1 | equemene | KK = KK + N - J + 1 |
192 | 1 | equemene | 60 CONTINUE |
193 | 1 | equemene | ELSE |
194 | 1 | equemene | JX = KX |
195 | 1 | equemene | DO 80 J = 1,N |
196 | 1 | equemene | IF (X(JX).NE.ZERO) THEN |
197 | 1 | equemene | TEMP = ALPHA*CONJG(X(JX)) |
198 | 1 | equemene | AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX)) |
199 | 1 | equemene | IX = JX |
200 | 1 | equemene | DO 70 K = KK + 1,KK + N - J |
201 | 1 | equemene | IX = IX + INCX |
202 | 1 | equemene | AP(K) = AP(K) + X(IX)*TEMP |
203 | 1 | equemene | 70 CONTINUE |
204 | 1 | equemene | ELSE |
205 | 1 | equemene | AP(KK) = REAL(AP(KK)) |
206 | 1 | equemene | END IF |
207 | 1 | equemene | JX = JX + INCX |
208 | 1 | equemene | KK = KK + N - J + 1 |
209 | 1 | equemene | 80 CONTINUE |
210 | 1 | equemene | END IF |
211 | 1 | equemene | END IF |
212 | 1 | equemene | * |
213 | 1 | equemene | RETURN |
214 | 1 | equemene | * |
215 | 1 | equemene | * End of CHPR . |
216 | 1 | equemene | * |
217 | 1 | equemene | END |