Statistiques
| Révision :

root / src / blas / cher2.f @ 1

Historique | Voir | Annoter | Télécharger (7,87 ko)

1 1 equemene
      SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      COMPLEX ALPHA
4 1 equemene
      INTEGER INCX,INCY,LDA,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      COMPLEX A(LDA,*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  CHER2  performs the hermitian rank 2 operation
15 1 equemene
*
16 1 equemene
*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
17 1 equemene
*
18 1 equemene
*  where alpha is a scalar, x and y are n element vectors and A is an n
19 1 equemene
*  by n hermitian matrix.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the array A is to be referenced as
27 1 equemene
*           follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30 1 equemene
*                                  is to be referenced.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33 1 equemene
*                                  is to be referenced.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - COMPLEX         .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  X      - COMPLEX          array of dimension at least
47 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
48 1 equemene
*           Before entry, the incremented array X must contain the n
49 1 equemene
*           element vector x.
50 1 equemene
*           Unchanged on exit.
51 1 equemene
*
52 1 equemene
*  INCX   - INTEGER.
53 1 equemene
*           On entry, INCX specifies the increment for the elements of
54 1 equemene
*           X. INCX must not be zero.
55 1 equemene
*           Unchanged on exit.
56 1 equemene
*
57 1 equemene
*  Y      - COMPLEX          array of dimension at least
58 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
59 1 equemene
*           Before entry, the incremented array Y must contain the n
60 1 equemene
*           element vector y.
61 1 equemene
*           Unchanged on exit.
62 1 equemene
*
63 1 equemene
*  INCY   - INTEGER.
64 1 equemene
*           On entry, INCY specifies the increment for the elements of
65 1 equemene
*           Y. INCY must not be zero.
66 1 equemene
*           Unchanged on exit.
67 1 equemene
*
68 1 equemene
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
69 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
70 1 equemene
*           upper triangular part of the array A must contain the upper
71 1 equemene
*           triangular part of the hermitian matrix and the strictly
72 1 equemene
*           lower triangular part of A is not referenced. On exit, the
73 1 equemene
*           upper triangular part of the array A is overwritten by the
74 1 equemene
*           upper triangular part of the updated matrix.
75 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading n by n
76 1 equemene
*           lower triangular part of the array A must contain the lower
77 1 equemene
*           triangular part of the hermitian matrix and the strictly
78 1 equemene
*           upper triangular part of A is not referenced. On exit, the
79 1 equemene
*           lower triangular part of the array A is overwritten by the
80 1 equemene
*           lower triangular part of the updated matrix.
81 1 equemene
*           Note that the imaginary parts of the diagonal elements need
82 1 equemene
*           not be set, they are assumed to be zero, and on exit they
83 1 equemene
*           are set to zero.
84 1 equemene
*
85 1 equemene
*  LDA    - INTEGER.
86 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
87 1 equemene
*           in the calling (sub) program. LDA must be at least
88 1 equemene
*           max( 1, n ).
89 1 equemene
*           Unchanged on exit.
90 1 equemene
*
91 1 equemene
*
92 1 equemene
*  Level 2 Blas routine.
93 1 equemene
*
94 1 equemene
*  -- Written on 22-October-1986.
95 1 equemene
*     Jack Dongarra, Argonne National Lab.
96 1 equemene
*     Jeremy Du Croz, Nag Central Office.
97 1 equemene
*     Sven Hammarling, Nag Central Office.
98 1 equemene
*     Richard Hanson, Sandia National Labs.
99 1 equemene
*
100 1 equemene
*
101 1 equemene
*     .. Parameters ..
102 1 equemene
      COMPLEX ZERO
103 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
104 1 equemene
*     ..
105 1 equemene
*     .. Local Scalars ..
106 1 equemene
      COMPLEX TEMP1,TEMP2
107 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
108 1 equemene
*     ..
109 1 equemene
*     .. External Functions ..
110 1 equemene
      LOGICAL LSAME
111 1 equemene
      EXTERNAL LSAME
112 1 equemene
*     ..
113 1 equemene
*     .. External Subroutines ..
114 1 equemene
      EXTERNAL XERBLA
115 1 equemene
*     ..
116 1 equemene
*     .. Intrinsic Functions ..
117 1 equemene
      INTRINSIC CONJG,MAX,REAL
118 1 equemene
*     ..
119 1 equemene
*
120 1 equemene
*     Test the input parameters.
121 1 equemene
*
122 1 equemene
      INFO = 0
123 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
124 1 equemene
          INFO = 1
125 1 equemene
      ELSE IF (N.LT.0) THEN
126 1 equemene
          INFO = 2
127 1 equemene
      ELSE IF (INCX.EQ.0) THEN
128 1 equemene
          INFO = 5
129 1 equemene
      ELSE IF (INCY.EQ.0) THEN
130 1 equemene
          INFO = 7
131 1 equemene
      ELSE IF (LDA.LT.MAX(1,N)) THEN
132 1 equemene
          INFO = 9
133 1 equemene
      END IF
134 1 equemene
      IF (INFO.NE.0) THEN
135 1 equemene
          CALL XERBLA('CHER2 ',INFO)
136 1 equemene
          RETURN
137 1 equemene
      END IF
138 1 equemene
*
139 1 equemene
*     Quick return if possible.
140 1 equemene
*
141 1 equemene
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
142 1 equemene
*
143 1 equemene
*     Set up the start points in X and Y if the increments are not both
144 1 equemene
*     unity.
145 1 equemene
*
146 1 equemene
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
147 1 equemene
          IF (INCX.GT.0) THEN
148 1 equemene
              KX = 1
149 1 equemene
          ELSE
150 1 equemene
              KX = 1 - (N-1)*INCX
151 1 equemene
          END IF
152 1 equemene
          IF (INCY.GT.0) THEN
153 1 equemene
              KY = 1
154 1 equemene
          ELSE
155 1 equemene
              KY = 1 - (N-1)*INCY
156 1 equemene
          END IF
157 1 equemene
          JX = KX
158 1 equemene
          JY = KY
159 1 equemene
      END IF
160 1 equemene
*
161 1 equemene
*     Start the operations. In this version the elements of A are
162 1 equemene
*     accessed sequentially with one pass through the triangular part
163 1 equemene
*     of A.
164 1 equemene
*
165 1 equemene
      IF (LSAME(UPLO,'U')) THEN
166 1 equemene
*
167 1 equemene
*        Form  A  when A is stored in the upper triangle.
168 1 equemene
*
169 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
170 1 equemene
              DO 20 J = 1,N
171 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
172 1 equemene
                      TEMP1 = ALPHA*CONJG(Y(J))
173 1 equemene
                      TEMP2 = CONJG(ALPHA*X(J))
174 1 equemene
                      DO 10 I = 1,J - 1
175 1 equemene
                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
176 1 equemene
   10                 CONTINUE
177 1 equemene
                      A(J,J) = REAL(A(J,J)) +
178 1 equemene
     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
179 1 equemene
                  ELSE
180 1 equemene
                      A(J,J) = REAL(A(J,J))
181 1 equemene
                  END IF
182 1 equemene
   20         CONTINUE
183 1 equemene
          ELSE
184 1 equemene
              DO 40 J = 1,N
185 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
186 1 equemene
                      TEMP1 = ALPHA*CONJG(Y(JY))
187 1 equemene
                      TEMP2 = CONJG(ALPHA*X(JX))
188 1 equemene
                      IX = KX
189 1 equemene
                      IY = KY
190 1 equemene
                      DO 30 I = 1,J - 1
191 1 equemene
                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
192 1 equemene
                          IX = IX + INCX
193 1 equemene
                          IY = IY + INCY
194 1 equemene
   30                 CONTINUE
195 1 equemene
                      A(J,J) = REAL(A(J,J)) +
196 1 equemene
     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
197 1 equemene
                  ELSE
198 1 equemene
                      A(J,J) = REAL(A(J,J))
199 1 equemene
                  END IF
200 1 equemene
                  JX = JX + INCX
201 1 equemene
                  JY = JY + INCY
202 1 equemene
   40         CONTINUE
203 1 equemene
          END IF
204 1 equemene
      ELSE
205 1 equemene
*
206 1 equemene
*        Form  A  when A is stored in the lower triangle.
207 1 equemene
*
208 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
209 1 equemene
              DO 60 J = 1,N
210 1 equemene
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
211 1 equemene
                      TEMP1 = ALPHA*CONJG(Y(J))
212 1 equemene
                      TEMP2 = CONJG(ALPHA*X(J))
213 1 equemene
                      A(J,J) = REAL(A(J,J)) +
214 1 equemene
     +                         REAL(X(J)*TEMP1+Y(J)*TEMP2)
215 1 equemene
                      DO 50 I = J + 1,N
216 1 equemene
                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
217 1 equemene
   50                 CONTINUE
218 1 equemene
                  ELSE
219 1 equemene
                      A(J,J) = REAL(A(J,J))
220 1 equemene
                  END IF
221 1 equemene
   60         CONTINUE
222 1 equemene
          ELSE
223 1 equemene
              DO 80 J = 1,N
224 1 equemene
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
225 1 equemene
                      TEMP1 = ALPHA*CONJG(Y(JY))
226 1 equemene
                      TEMP2 = CONJG(ALPHA*X(JX))
227 1 equemene
                      A(J,J) = REAL(A(J,J)) +
228 1 equemene
     +                         REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
229 1 equemene
                      IX = JX
230 1 equemene
                      IY = JY
231 1 equemene
                      DO 70 I = J + 1,N
232 1 equemene
                          IX = IX + INCX
233 1 equemene
                          IY = IY + INCY
234 1 equemene
                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
235 1 equemene
   70                 CONTINUE
236 1 equemene
                  ELSE
237 1 equemene
                      A(J,J) = REAL(A(J,J))
238 1 equemene
                  END IF
239 1 equemene
                  JX = JX + INCX
240 1 equemene
                  JY = JY + INCY
241 1 equemene
   80         CONTINUE
242 1 equemene
          END IF
243 1 equemene
      END IF
244 1 equemene
*
245 1 equemene
      RETURN
246 1 equemene
*
247 1 equemene
*     End of CHER2 .
248 1 equemene
*
249 1 equemene
      END