Statistiques
| Révision :

root / src / blas / chemv.f @ 1

Historique | Voir | Annoter | Télécharger (7,83 ko)

1 1 equemene
      SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2 1 equemene
*     .. Scalar Arguments ..
3 1 equemene
      COMPLEX ALPHA,BETA
4 1 equemene
      INTEGER INCX,INCY,LDA,N
5 1 equemene
      CHARACTER UPLO
6 1 equemene
*     ..
7 1 equemene
*     .. Array Arguments ..
8 1 equemene
      COMPLEX A(LDA,*),X(*),Y(*)
9 1 equemene
*     ..
10 1 equemene
*
11 1 equemene
*  Purpose
12 1 equemene
*  =======
13 1 equemene
*
14 1 equemene
*  CHEMV  performs the matrix-vector  operation
15 1 equemene
*
16 1 equemene
*     y := alpha*A*x + beta*y,
17 1 equemene
*
18 1 equemene
*  where alpha and beta are scalars, x and y are n element vectors and
19 1 equemene
*  A is an n by n hermitian matrix.
20 1 equemene
*
21 1 equemene
*  Arguments
22 1 equemene
*  ==========
23 1 equemene
*
24 1 equemene
*  UPLO   - CHARACTER*1.
25 1 equemene
*           On entry, UPLO specifies whether the upper or lower
26 1 equemene
*           triangular part of the array A is to be referenced as
27 1 equemene
*           follows:
28 1 equemene
*
29 1 equemene
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
30 1 equemene
*                                  is to be referenced.
31 1 equemene
*
32 1 equemene
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
33 1 equemene
*                                  is to be referenced.
34 1 equemene
*
35 1 equemene
*           Unchanged on exit.
36 1 equemene
*
37 1 equemene
*  N      - INTEGER.
38 1 equemene
*           On entry, N specifies the order of the matrix A.
39 1 equemene
*           N must be at least zero.
40 1 equemene
*           Unchanged on exit.
41 1 equemene
*
42 1 equemene
*  ALPHA  - COMPLEX         .
43 1 equemene
*           On entry, ALPHA specifies the scalar alpha.
44 1 equemene
*           Unchanged on exit.
45 1 equemene
*
46 1 equemene
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
47 1 equemene
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
48 1 equemene
*           upper triangular part of the array A must contain the upper
49 1 equemene
*           triangular part of the hermitian matrix and the strictly
50 1 equemene
*           lower triangular part of A is not referenced.
51 1 equemene
*           Before entry with UPLO = 'L' or 'l', the leading n by n
52 1 equemene
*           lower triangular part of the array A must contain the lower
53 1 equemene
*           triangular part of the hermitian matrix and the strictly
54 1 equemene
*           upper triangular part of A is not referenced.
55 1 equemene
*           Note that the imaginary parts of the diagonal elements need
56 1 equemene
*           not be set and are assumed to be zero.
57 1 equemene
*           Unchanged on exit.
58 1 equemene
*
59 1 equemene
*  LDA    - INTEGER.
60 1 equemene
*           On entry, LDA specifies the first dimension of A as declared
61 1 equemene
*           in the calling (sub) program. LDA must be at least
62 1 equemene
*           max( 1, n ).
63 1 equemene
*           Unchanged on exit.
64 1 equemene
*
65 1 equemene
*  X      - COMPLEX          array of dimension at least
66 1 equemene
*           ( 1 + ( n - 1 )*abs( INCX ) ).
67 1 equemene
*           Before entry, the incremented array X must contain the n
68 1 equemene
*           element vector x.
69 1 equemene
*           Unchanged on exit.
70 1 equemene
*
71 1 equemene
*  INCX   - INTEGER.
72 1 equemene
*           On entry, INCX specifies the increment for the elements of
73 1 equemene
*           X. INCX must not be zero.
74 1 equemene
*           Unchanged on exit.
75 1 equemene
*
76 1 equemene
*  BETA   - COMPLEX         .
77 1 equemene
*           On entry, BETA specifies the scalar beta. When BETA is
78 1 equemene
*           supplied as zero then Y need not be set on input.
79 1 equemene
*           Unchanged on exit.
80 1 equemene
*
81 1 equemene
*  Y      - COMPLEX          array of dimension at least
82 1 equemene
*           ( 1 + ( n - 1 )*abs( INCY ) ).
83 1 equemene
*           Before entry, the incremented array Y must contain the n
84 1 equemene
*           element vector y. On exit, Y is overwritten by the updated
85 1 equemene
*           vector y.
86 1 equemene
*
87 1 equemene
*  INCY   - INTEGER.
88 1 equemene
*           On entry, INCY specifies the increment for the elements of
89 1 equemene
*           Y. INCY must not be zero.
90 1 equemene
*           Unchanged on exit.
91 1 equemene
*
92 1 equemene
*
93 1 equemene
*  Level 2 Blas routine.
94 1 equemene
*
95 1 equemene
*  -- Written on 22-October-1986.
96 1 equemene
*     Jack Dongarra, Argonne National Lab.
97 1 equemene
*     Jeremy Du Croz, Nag Central Office.
98 1 equemene
*     Sven Hammarling, Nag Central Office.
99 1 equemene
*     Richard Hanson, Sandia National Labs.
100 1 equemene
*
101 1 equemene
*
102 1 equemene
*     .. Parameters ..
103 1 equemene
      COMPLEX ONE
104 1 equemene
      PARAMETER (ONE= (1.0E+0,0.0E+0))
105 1 equemene
      COMPLEX ZERO
106 1 equemene
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
107 1 equemene
*     ..
108 1 equemene
*     .. Local Scalars ..
109 1 equemene
      COMPLEX TEMP1,TEMP2
110 1 equemene
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
111 1 equemene
*     ..
112 1 equemene
*     .. External Functions ..
113 1 equemene
      LOGICAL LSAME
114 1 equemene
      EXTERNAL LSAME
115 1 equemene
*     ..
116 1 equemene
*     .. External Subroutines ..
117 1 equemene
      EXTERNAL XERBLA
118 1 equemene
*     ..
119 1 equemene
*     .. Intrinsic Functions ..
120 1 equemene
      INTRINSIC CONJG,MAX,REAL
121 1 equemene
*     ..
122 1 equemene
*
123 1 equemene
*     Test the input parameters.
124 1 equemene
*
125 1 equemene
      INFO = 0
126 1 equemene
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
127 1 equemene
          INFO = 1
128 1 equemene
      ELSE IF (N.LT.0) THEN
129 1 equemene
          INFO = 2
130 1 equemene
      ELSE IF (LDA.LT.MAX(1,N)) THEN
131 1 equemene
          INFO = 5
132 1 equemene
      ELSE IF (INCX.EQ.0) THEN
133 1 equemene
          INFO = 7
134 1 equemene
      ELSE IF (INCY.EQ.0) THEN
135 1 equemene
          INFO = 10
136 1 equemene
      END IF
137 1 equemene
      IF (INFO.NE.0) THEN
138 1 equemene
          CALL XERBLA('CHEMV ',INFO)
139 1 equemene
          RETURN
140 1 equemene
      END IF
141 1 equemene
*
142 1 equemene
*     Quick return if possible.
143 1 equemene
*
144 1 equemene
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
145 1 equemene
*
146 1 equemene
*     Set up the start points in  X  and  Y.
147 1 equemene
*
148 1 equemene
      IF (INCX.GT.0) THEN
149 1 equemene
          KX = 1
150 1 equemene
      ELSE
151 1 equemene
          KX = 1 - (N-1)*INCX
152 1 equemene
      END IF
153 1 equemene
      IF (INCY.GT.0) THEN
154 1 equemene
          KY = 1
155 1 equemene
      ELSE
156 1 equemene
          KY = 1 - (N-1)*INCY
157 1 equemene
      END IF
158 1 equemene
*
159 1 equemene
*     Start the operations. In this version the elements of A are
160 1 equemene
*     accessed sequentially with one pass through the triangular part
161 1 equemene
*     of A.
162 1 equemene
*
163 1 equemene
*     First form  y := beta*y.
164 1 equemene
*
165 1 equemene
      IF (BETA.NE.ONE) THEN
166 1 equemene
          IF (INCY.EQ.1) THEN
167 1 equemene
              IF (BETA.EQ.ZERO) THEN
168 1 equemene
                  DO 10 I = 1,N
169 1 equemene
                      Y(I) = ZERO
170 1 equemene
   10             CONTINUE
171 1 equemene
              ELSE
172 1 equemene
                  DO 20 I = 1,N
173 1 equemene
                      Y(I) = BETA*Y(I)
174 1 equemene
   20             CONTINUE
175 1 equemene
              END IF
176 1 equemene
          ELSE
177 1 equemene
              IY = KY
178 1 equemene
              IF (BETA.EQ.ZERO) THEN
179 1 equemene
                  DO 30 I = 1,N
180 1 equemene
                      Y(IY) = ZERO
181 1 equemene
                      IY = IY + INCY
182 1 equemene
   30             CONTINUE
183 1 equemene
              ELSE
184 1 equemene
                  DO 40 I = 1,N
185 1 equemene
                      Y(IY) = BETA*Y(IY)
186 1 equemene
                      IY = IY + INCY
187 1 equemene
   40             CONTINUE
188 1 equemene
              END IF
189 1 equemene
          END IF
190 1 equemene
      END IF
191 1 equemene
      IF (ALPHA.EQ.ZERO) RETURN
192 1 equemene
      IF (LSAME(UPLO,'U')) THEN
193 1 equemene
*
194 1 equemene
*        Form  y  when A is stored in upper triangle.
195 1 equemene
*
196 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
197 1 equemene
              DO 60 J = 1,N
198 1 equemene
                  TEMP1 = ALPHA*X(J)
199 1 equemene
                  TEMP2 = ZERO
200 1 equemene
                  DO 50 I = 1,J - 1
201 1 equemene
                      Y(I) = Y(I) + TEMP1*A(I,J)
202 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
203 1 equemene
   50             CONTINUE
204 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
205 1 equemene
   60         CONTINUE
206 1 equemene
          ELSE
207 1 equemene
              JX = KX
208 1 equemene
              JY = KY
209 1 equemene
              DO 80 J = 1,N
210 1 equemene
                  TEMP1 = ALPHA*X(JX)
211 1 equemene
                  TEMP2 = ZERO
212 1 equemene
                  IX = KX
213 1 equemene
                  IY = KY
214 1 equemene
                  DO 70 I = 1,J - 1
215 1 equemene
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
216 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
217 1 equemene
                      IX = IX + INCX
218 1 equemene
                      IY = IY + INCY
219 1 equemene
   70             CONTINUE
220 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
221 1 equemene
                  JX = JX + INCX
222 1 equemene
                  JY = JY + INCY
223 1 equemene
   80         CONTINUE
224 1 equemene
          END IF
225 1 equemene
      ELSE
226 1 equemene
*
227 1 equemene
*        Form  y  when A is stored in lower triangle.
228 1 equemene
*
229 1 equemene
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
230 1 equemene
              DO 100 J = 1,N
231 1 equemene
                  TEMP1 = ALPHA*X(J)
232 1 equemene
                  TEMP2 = ZERO
233 1 equemene
                  Y(J) = Y(J) + TEMP1*REAL(A(J,J))
234 1 equemene
                  DO 90 I = J + 1,N
235 1 equemene
                      Y(I) = Y(I) + TEMP1*A(I,J)
236 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
237 1 equemene
   90             CONTINUE
238 1 equemene
                  Y(J) = Y(J) + ALPHA*TEMP2
239 1 equemene
  100         CONTINUE
240 1 equemene
          ELSE
241 1 equemene
              JX = KX
242 1 equemene
              JY = KY
243 1 equemene
              DO 120 J = 1,N
244 1 equemene
                  TEMP1 = ALPHA*X(JX)
245 1 equemene
                  TEMP2 = ZERO
246 1 equemene
                  Y(JY) = Y(JY) + TEMP1*REAL(A(J,J))
247 1 equemene
                  IX = JX
248 1 equemene
                  IY = JY
249 1 equemene
                  DO 110 I = J + 1,N
250 1 equemene
                      IX = IX + INCX
251 1 equemene
                      IY = IY + INCY
252 1 equemene
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
253 1 equemene
                      TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
254 1 equemene
  110             CONTINUE
255 1 equemene
                  Y(JY) = Y(JY) + ALPHA*TEMP2
256 1 equemene
                  JX = JX + INCX
257 1 equemene
                  JY = JY + INCY
258 1 equemene
  120         CONTINUE
259 1 equemene
          END IF
260 1 equemene
      END IF
261 1 equemene
*
262 1 equemene
      RETURN
263 1 equemene
*
264 1 equemene
*     End of CHEMV .
265 1 equemene
*
266 1 equemene
      END