root / src / Calc_baker_allGeomF.f90 @ 1
Historique | Voir | Annoter | Télécharger (9,64 ko)
1 | 1 | equemene | SUBROUTINE Calc_baker_allGeomF() |
---|---|---|---|
2 | 1 | equemene | ! |
3 | 1 | equemene | ! This subroutine analyses a geometry to construct the baker |
4 | 1 | equemene | ! delocalized internal coordinates |
5 | 1 | equemene | ! v1.0 |
6 | 1 | equemene | ! We use only one geometry |
7 | 1 | equemene | ! |
8 | 1 | equemene | Use Path_module, only : Pi,a0,BMat_BakerT,Nat,NCoord,XyzGeomI,NGeomI,UMatF, & |
9 | 1 | equemene | NPrim,BTransInvF,IntCoordI,Coordinate,CurrentCoord, & |
10 | 1 | equemene | ScanCoord,BprimT,BBT,BBT_inv,XprimitiveF,Symmetry_elimination, & |
11 | 1 | equemene | NgeomF,XyzGeomF |
12 | 1 | equemene | ! BMat_BakerT(3*Nat,NCoord), NCoord=3*Nat or NFree=3*Nat-6-Symmetry_elimination |
13 | 1 | equemene | ! depending upon the coordinate choice. IntCoordI(NGeomI,NCoord) where |
14 | 1 | equemene | ! UMatF(NGeomI,NPrim,NCoord), NCoord number of vectors in UMat matrix, i.e. NCoord |
15 | 1 | equemene | ! Baker coordinates. NPrim is the number of primitive internal coordinates. |
16 | 1 | equemene | |
17 | 1 | equemene | Use Io_module |
18 | 1 | equemene | IMPLICIT NONE |
19 | 1 | equemene | |
20 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: Geom(:,:) !(3,Nat) |
21 | 1 | equemene | ! NPrim is the number of primitive coordinates and NCoord is the number |
22 | 1 | equemene | ! of internal coordinates. BMat is actually (NPrim,3*Nat). |
23 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: GMat(:,:) !(NPrim,NPrim) |
24 | 1 | equemene | ! EigVec(..) contains ALL eigevectors of BMat times BprimT, NOT only Baker Coordinate vectors. |
25 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: EigVec(:,:), EigVal(:) ! EigVec(NPrim,NPrim) |
26 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: x(:), y(:), z(:) |
27 | 1 | equemene | REAL(KREAL), ALLOCATABLE :: XPrimRef(:) ! NPrim |
28 | 1 | equemene | INTEGER(KINT) :: IGeom |
29 | 1 | equemene | |
30 | 1 | equemene | real(KREAL) :: vx,vy,vz,dist, Norm |
31 | 1 | equemene | real(KREAL) :: vx1,vy1,vz1,norm1 |
32 | 1 | equemene | real(KREAL) :: vx2,vy2,vz2,norm2 |
33 | 1 | equemene | real(KREAL) :: vx3,vy3,vz3,norm3 |
34 | 1 | equemene | real(KREAL) :: vx4,vy4,vz4,norm4 |
35 | 1 | equemene | real(KREAL) :: vx5,vy5,vz5,norm5 |
36 | 1 | equemene | real(KREAL) :: val,val_d, Q, T |
37 | 1 | equemene | |
38 | 1 | equemene | INTEGER(KINT) :: I,J, n1,n2,n3,n4,IAt,IL,JL,IFrag,ITmp, K, KMax |
39 | 1 | equemene | INTEGER(KINT) :: I0, IOld, IAtTmp, Izm, JAt, Kat, Lat, L, NOUT |
40 | 1 | equemene | |
41 | 1 | equemene | REAL(KREAL) :: sAngleIatIKat, sAngleIIatLat |
42 | 1 | equemene | REAL(KREAL) :: DiheTmp |
43 | 1 | equemene | |
44 | 1 | equemene | LOGICAL :: debug, bond, AddPrimitiveCoord, FAIL |
45 | 1 | equemene | LOGICAL :: DebugPFL |
46 | 1 | equemene | |
47 | 1 | equemene | INTERFACE |
48 | 1 | equemene | function valid(string) result (isValid) |
49 | 1 | equemene | CHARACTER(*), intent(in) :: string |
50 | 1 | equemene | logical :: isValid |
51 | 1 | equemene | END function VALID |
52 | 1 | equemene | |
53 | 1 | equemene | FUNCTION angle(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2) |
54 | 1 | equemene | use Path_module, only : Pi,KINT, KREAL |
55 | 1 | equemene | real(KREAL) :: v1x,v1y,v1z,norm1 |
56 | 1 | equemene | real(KREAL) :: v2x,v2y,v2z,norm2 |
57 | 1 | equemene | real(KREAL) :: angle |
58 | 1 | equemene | END FUNCTION ANGLE |
59 | 1 | equemene | |
60 | 1 | equemene | FUNCTION angle_d(v1x,v1y,v1z,norm1,v2x,v2y,v2z,norm2,v3x,v3y,v3z,norm3) |
61 | 1 | equemene | use Path_module, only : Pi,KINT, KREAL |
62 | 1 | equemene | real(KREAL) :: v1x,v1y,v1z,norm1 |
63 | 1 | equemene | real(KREAL) :: v2x,v2y,v2z,norm2 |
64 | 1 | equemene | real(KREAL) :: v3x,v3y,v3z,norm3 |
65 | 1 | equemene | real(KREAL) :: angle_d,ca,sa |
66 | 1 | equemene | END FUNCTION ANGLE_D |
67 | 1 | equemene | |
68 | 1 | equemene | |
69 | 1 | equemene | |
70 | 1 | equemene | SUBROUTINE Calc_Xprim(nat,x,y,z,Coordinate,NPrim,XPrimitive,XPrimRef) |
71 | 1 | equemene | ! |
72 | 1 | equemene | ! This subroutine uses the description of a list of Coordinates |
73 | 1 | equemene | ! to compute the values of the coordinates for a given geometry. |
74 | 1 | equemene | ! |
75 | 1 | equemene | !!!!!!!!!! |
76 | 1 | equemene | ! Input: |
77 | 1 | equemene | ! Na: INTEGER, Number of atoms |
78 | 1 | equemene | ! x,y,z(Na): REAL, cartesian coordinates of the considered geometry |
79 | 1 | equemene | ! Coordinate (Pointer(ListCoord)): description of the wanted coordiantes |
80 | 1 | equemene | ! NPrim, INTEGER: Number of coordinates to compute |
81 | 1 | equemene | ! |
82 | 1 | equemene | ! Optional: XPrimRef(NPrim) REAL: array that contains coordinates values for |
83 | 1 | equemene | ! a former geometry. Useful for Dihedral angles evolution... |
84 | 1 | equemene | |
85 | 1 | equemene | !!!!!!!!!!! |
86 | 1 | equemene | ! Output: |
87 | 1 | equemene | ! XPrimimite(NPrim) REAL: array that will contain the values of the coordinates |
88 | 1 | equemene | ! |
89 | 1 | equemene | !!!!!!!!! |
90 | 1 | equemene | |
91 | 1 | equemene | Use VarTypes |
92 | 1 | equemene | Use Io_module |
93 | 1 | equemene | Use Path_module, only : pi |
94 | 1 | equemene | |
95 | 1 | equemene | IMPLICIT NONE |
96 | 1 | equemene | |
97 | 1 | equemene | Type (ListCoord), POINTER :: Coordinate |
98 | 1 | equemene | INTEGER(KINT), INTENT(IN) :: Nat,NPrim |
99 | 1 | equemene | REAL(KREAL), INTENT(IN) :: x(Nat), y(Nat), z(Nat) |
100 | 1 | equemene | REAL(KREAL), INTENT(IN), OPTIONAL :: XPrimRef(NPrim) |
101 | 1 | equemene | REAL(KREAL), INTENT(OUT) :: XPrimitive(NPrim) |
102 | 1 | equemene | |
103 | 1 | equemene | END SUBROUTINE CALC_XPRIM |
104 | 1 | equemene | END INTERFACE |
105 | 1 | equemene | |
106 | 1 | equemene | |
107 | 1 | equemene | |
108 | 1 | equemene | |
109 | 1 | equemene | debug=valid("Calc_baker_allGeomF") |
110 | 1 | equemene | debugPFL=valid("bakerPFL") |
111 | 1 | equemene | if (debug) WRITE(*,*) '============ Entering Calc_baker_allGeomF =============' |
112 | 1 | equemene | |
113 | 1 | equemene | ALLOCATE(Geom(3,Nat),x(Nat),y(Nat),z(Nat)) |
114 | 1 | equemene | ALLOCATE(XPrimRef(NPrim)) |
115 | 1 | equemene | |
116 | 1 | equemene | ! Now calculating values of all primitive bonds for all final geometries: |
117 | 1 | equemene | DO IGeom=1, NGeomF |
118 | 1 | equemene | x(1:Nat) = XyzGeomF(IGeom,1,1:Nat) |
119 | 1 | equemene | y(1:Nat) = XyzGeomF(IGeom,2,1:Nat) |
120 | 1 | equemene | z(1:Nat) = XyzGeomF(IGeom,3,1:Nat) |
121 | 1 | equemene | XPrimREf=XPrimitiveF(IGeom,:) |
122 | 1 | equemene | Call Calc_XPrim(nat,x,y,z,Coordinate,NPrim,XPrimitiveF(IGeom,:),XPrimRef) |
123 | 1 | equemene | ! ScanCoord=>Coordinate |
124 | 1 | equemene | ! I=0 ! index for the NPrim (NPrim is the number of primitive coordinates). |
125 | 1 | equemene | ! DO WHILE (Associated(ScanCoord%next)) |
126 | 1 | equemene | ! I=I+1 |
127 | 1 | equemene | ! SELECT CASE (ScanCoord%Type) |
128 | 1 | equemene | ! CASE ('BOND') |
129 | 1 | equemene | ! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
130 | 1 | equemene | ! XprimitiveF(IGeom,I) = Norm2 |
131 | 1 | equemene | ! CASE ('ANGLE') |
132 | 1 | equemene | ! Call vecteur(ScanCoord%At2,ScanCoord%At3,x,y,z,vx1,vy1,vz1,Norm1) |
133 | 1 | equemene | ! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx2,vy2,vz2,Norm2) |
134 | 1 | equemene | ! XprimitiveF(IGeom,I) = angle(vx1,vy1,vz1,Norm1,vx2,vy2,vz2,Norm2)*Pi/180. |
135 | 1 | equemene | ! CASE ('DIHEDRAL') |
136 | 1 | equemene | ! Call vecteur(ScanCoord%At3,ScanCoord%At2,x,y,z,vx2,vy2,vz2,Norm2) |
137 | 1 | equemene | ! Call vecteur(ScanCoord%At2,ScanCoord%At1,x,y,z,vx1,vy1,vz1,Norm1) |
138 | 1 | equemene | ! Call vecteur(ScanCoord%At3,ScanCoord%At4,x,y,z,vx3,vy3,vz3,Norm3) |
139 | 1 | equemene | ! Call produit_vect(vx3,vy3,vz3,norm3,vx2,vy2,vz2,norm2, & |
140 | 1 | equemene | ! vx5,vy5,vz5,norm5) |
141 | 1 | equemene | ! Call produit_vect(vx1,vy1,vz1,norm1,vx2,vy2,vz2,norm2, & |
142 | 1 | equemene | ! vx4,vy4,vz4,norm4) |
143 | 1 | equemene | ! DiheTmp= angle_d(vx4,vy4,vz4,norm4,vx5,vy5,vz5,norm5, & |
144 | 1 | equemene | ! vx2,vy2,vz2,norm2) |
145 | 1 | equemene | ! XprimitiveF(IGeom,I) = DiheTmp*Pi/180. |
146 | 1 | equemene | !! We treat large dihedral angles differently as +180=-180 mathematically and physically |
147 | 1 | equemene | !! but this causes lots of troubles when converting baker to cart. |
148 | 1 | equemene | !! So we ensure that large dihedral angles always have the same sign |
149 | 1 | equemene | ! if (abs(ScanCoord%SignDihedral).NE.1) THEN |
150 | 1 | equemene | ! ScanCoord%SignDihedral=Int(Sign(1.d0,DiheTmp)) |
151 | 1 | equemene | ! ELSE |
152 | 1 | equemene | ! If ((abs(DiheTmp).GE.170.D0).AND.(Sign(1.,DiheTmp)*ScanCoord%SignDihedral<0)) THEN |
153 | 1 | equemene | ! XprimitiveF(IGeom,I) = DiheTmp*Pi/180.+ ScanCoord%SignDihedral*2.*Pi |
154 | 1 | equemene | ! END IF |
155 | 1 | equemene | ! END IF |
156 | 1 | equemene | ! END SELECT |
157 | 1 | equemene | ! ScanCoord => ScanCoord%next |
158 | 1 | equemene | ! END DO ! matches DO WHILE (Associated(ScanCoord%next)) |
159 | 1 | equemene | END DO ! matches DO IGeom=1, NGeomF |
160 | 1 | equemene | |
161 | 1 | equemene | ALLOCATE(BprimT(3*Nat,NPrim)) |
162 | 1 | equemene | ALLOCATE(Gmat(NPrim,NPrim)) |
163 | 1 | equemene | ALLOCATE(EigVal(NPrim),EigVec(NPrim,NPrim)) |
164 | 1 | equemene | ALLOCATE(BBT(NCoord,NCoord)) |
165 | 1 | equemene | ALLOCATE(BBT_inv(NCoord,NCoord)) |
166 | 1 | equemene | BTransInvF = 0.d0 |
167 | 1 | equemene | |
168 | 1 | equemene | DO IGeom=1, NGeomF |
169 | 1 | equemene | Geom(1,:)=XyzGeomF(IGeom,1,1:Nat) ! XyzGeomI(NGeomI,3,Nat) |
170 | 1 | equemene | Geom(2,:)=XyzGeomF(IGeom,2,1:Nat) |
171 | 1 | equemene | Geom(3,:)=XyzGeomF(IGeom,3,1:Nat) |
172 | 1 | equemene | |
173 | 1 | equemene | BprimT=0.d0 |
174 | 1 | equemene | ScanCoord=>Coordinate |
175 | 1 | equemene | I=0 |
176 | 1 | equemene | DO WHILE (Associated(ScanCoord%next)) |
177 | 1 | equemene | I=I+1 |
178 | 1 | equemene | SELECT CASE (ScanCoord%Type) |
179 | 1 | equemene | CASE ('BOND') |
180 | 1 | equemene | CALL CONSTRAINTS_BONDLENGTH_DER(Nat,ScanCoord%at1,ScanCoord%AT2, & |
181 | 1 | equemene | Geom,BprimT(1,I)) |
182 | 1 | equemene | CASE ('ANGLE') |
183 | 1 | equemene | CALL CONSTRAINTS_BONDANGLE_DER(Nat,ScanCoord%At1,ScanCoord%AT2, & |
184 | 1 | equemene | ScanCoord%At3,Geom,BprimT(1,I)) |
185 | 1 | equemene | CASE ('DIHEDRAL') |
186 | 1 | equemene | CALL CONSTRAINTS_TORSION_DER2(Nat,ScanCoord%At1,ScanCoord%AT2, & |
187 | 1 | equemene | ScanCoord%At3,ScanCoord%At4,Geom,BprimT(1,I)) |
188 | 1 | equemene | END SELECT |
189 | 1 | equemene | ScanCoord => ScanCoord%next |
190 | 1 | equemene | END DO |
191 | 1 | equemene | |
192 | 1 | equemene | ! BprimT(3*Nat,NPrim) |
193 | 1 | equemene | ! We now compute G=B(BT) matrix |
194 | 1 | equemene | GMat=0.d0 |
195 | 1 | equemene | DO I=1,NPrim |
196 | 1 | equemene | DO J=1,3*Nat |
197 | 1 | equemene | GMat(:,I)=Gmat(:,I)+BprimT(J,:)*BprimT(J,I) !*1.d0/mass(atome(int(K/3.d0))) |
198 | 1 | equemene | END DO |
199 | 1 | equemene | END DO |
200 | 1 | equemene | |
201 | 1 | equemene | ! Diagonalize G |
202 | 1 | equemene | EigVal=0.d0 |
203 | 1 | equemene | EigVec=0.d0 |
204 | 1 | equemene | Call Jacobi(GMat,NPrim,EigVal,EigVec,NPrim) |
205 | 1 | equemene | Call Trie(NPrim,EigVal,EigVec,NPrim) |
206 | 1 | equemene | DO I=1,NPrim |
207 | 1 | equemene | !WRITE(*,'(1X,"Vector ",I3,": e=",F8.3)') I,EigVal(i) |
208 | 1 | equemene | !WRITE(*,'(20(1X,F8.4))') EigVec(1:min(20,NPrim),I) |
209 | 1 | equemene | END DO |
210 | 1 | equemene | |
211 | 1 | equemene | ! UMatF is nonredundant vector set, i.e. set of eigenvectors of BB^T |
212 | 1 | equemene | ! corresponding to eigenvalues > zero. |
213 | 1 | equemene | ! BMat_BakerT(3*Nat,NCoord), allocated in Path.f90, |
214 | 1 | equemene | ! NCoord=3*Nat-6 |
215 | 1 | equemene | BMat_BakerT = 0.d0 |
216 | 1 | equemene | J=0 |
217 | 1 | equemene | DO I=1,NPrim |
218 | 1 | equemene | IF (abs(eigval(I))>=1e-6) THEN |
219 | 1 | equemene | J=J+1 |
220 | 1 | equemene | DO K=1,NPrim |
221 | 1 | equemene | ! BprimT is transpose of B^prim. |
222 | 1 | equemene | ! B = UMatF^T B^prim, B^T = (B^prim)^T UMatF |
223 | 1 | equemene | BMat_BakerT(:,J)=BMat_BakerT(:,J)+BprimT(:,K)*Eigvec(K,I) |
224 | 1 | equemene | END DO |
225 | 1 | equemene | IF(J .GT. 3*Nat-6) THEN |
226 | 1 | equemene | WRITE(*,*) 'Number of vectors in Eigvec with eigval .GT. 1e-6(=UMatF) (=' & |
227 | 1 | equemene | ,J,') exceeded 3*Nat-6=',3*Nat-6, & |
228 | 1 | equemene | 'Stopping the calculation.' |
229 | 1 | equemene | STOP |
230 | 1 | equemene | END IF |
231 | 1 | equemene | UMatF(IGeom,:,J) = Eigvec(:,I) |
232 | 1 | equemene | END IF |
233 | 1 | equemene | END DO |
234 | 1 | equemene | |
235 | 1 | equemene | !!!!!!!!!!!!!!!!!!!! |
236 | 1 | equemene | ! |
237 | 1 | equemene | ! Debug purposes |
238 | 1 | equemene | ! |
239 | 1 | equemene | if (debugPFL) THEN |
240 | 1 | equemene | UMatF(IGeom,:,:)=0. |
241 | 1 | equemene | DO J=1,3*Nat-6 |
242 | 1 | equemene | UMatF(IGeom,J,J)=1. |
243 | 1 | equemene | END DO |
244 | 1 | equemene | END IF |
245 | 1 | equemene | |
246 | 1 | equemene | |
247 | 1 | equemene | !DO I=1, NPrim ! This loop is not needed because we already have IntCoordF |
248 | 1 | equemene | ! from interpolation. |
249 | 1 | equemene | ! Transpose of UMatF is needed below, that is why UMatF(IGeom,I,:). |
250 | 1 | equemene | ! IntCoordF(IGeom,:) = IntCoordF(IGeom,:) + UMat(IGeom,I,:)*XprimitiveF(IGeom,I) |
251 | 1 | equemene | !END DO |
252 | 1 | equemene | |
253 | 1 | equemene | ! Calculation of BTransInvF starts here: |
254 | 1 | equemene | ! Calculation of BBT(3*Nat-6,3*Nat-6)=BB^T: |
255 | 1 | equemene | ! BMat_BakerT(3*Nat,NCoord) is Transpose of B = UMatF^TB^prim |
256 | 1 | equemene | |
257 | 1 | equemene | BBT = 0.d0 |
258 | 1 | equemene | DO I=1, NCoord |
259 | 1 | equemene | DO J=1, 3*Nat |
260 | 1 | equemene | ! BBT(:,I) forms BB^T |
261 | 1 | equemene | BBT(:,I) = BBT(:,I) + BMat_BakerT(J,:)*BMat_BakerT(J,I) |
262 | 1 | equemene | END DO |
263 | 1 | equemene | END DO |
264 | 1 | equemene | |
265 | 1 | equemene | Call GenInv(NCoord,BBT,BBT_inv,NCoord) ! GenInv is in Mat_util.f90 |
266 | 1 | equemene | |
267 | 1 | equemene | ! Calculation of (B^T)^-1 = (BB^T)^-1B: |
268 | 1 | equemene | DO I=1, 3*Nat |
269 | 1 | equemene | DO J=1, NCoord |
270 | 1 | equemene | BTransInvF(IGeom,:,I) = BTransInvF(IGeom,:,I) + BBT_inv(:,J)*BMat_BakerT(I,J) |
271 | 1 | equemene | END DO |
272 | 1 | equemene | END DO |
273 | 1 | equemene | |
274 | 1 | equemene | END DO !matches DO IGeom=1, NGeomF |
275 | 1 | equemene | |
276 | 1 | equemene | DEALLOCATE(BBT,BBT_inv,BprimT,GMat,EigVal,EigVec) |
277 | 1 | equemene | DEALLOCATE(Geom,x,y,z,XprimRef) |
278 | 1 | equemene | |
279 | 1 | equemene | IF (debug) WRITE(*,*) "DBG Calc_baker_allGeomF over." |
280 | 1 | equemene | END SUBROUTINE Calc_baker_allGeomF |