root / doc / sphinx_doc / rref.rst @ f0703205
Historique | Voir | Annoter | Télécharger (28,19 ko)
1 |
Arabic to Roman pair list. |
---|---|
2 |
-------------------------- |
3 |
|
4 |
Description |
5 |
~~~~~~~~~~~ |
6 |
|
7 |
Util to convert Arabicto Roman |
8 |
|
9 |
Usage |
10 |
~~~~~ |
11 |
|
12 |
:: |
13 |
|
14 |
ARAB2ROM() |
15 |
|
16 |
Author(s) |
17 |
~~~~~~~~~ |
18 |
|
19 |
Florent Chuffart |
20 |
|
21 |
R: False Discovery Rate |
22 |
|
23 |
False Discovery Rate |
24 |
-------------------- |
25 |
|
26 |
Description |
27 |
~~~~~~~~~~~ |
28 |
|
29 |
From a vector x of independent p-values, extract the cutoff |
30 |
corresponding to the specified FDR. See Benjamini & Hochberg 1995 paper |
31 |
|
32 |
Usage |
33 |
~~~~~ |
34 |
|
35 |
:: |
36 |
|
37 |
FDR(x, FDR) |
38 |
|
39 |
Arguments |
40 |
~~~~~~~~~ |
41 |
|
42 |
``x`` |
43 |
|
44 |
A vector x of independent p-values. |
45 |
|
46 |
``FDR`` |
47 |
|
48 |
The specified FDR. |
49 |
|
50 |
Value |
51 |
~~~~~ |
52 |
|
53 |
Return the the corresponding cutoff. |
54 |
|
55 |
Author(s) |
56 |
~~~~~~~~~ |
57 |
|
58 |
Gael Yvert, Florent Chuffart |
59 |
|
60 |
Examples |
61 |
~~~~~~~~ |
62 |
|
63 |
:: |
64 |
|
65 |
print("example") |
66 |
|
67 |
R: Roman to Arabic pair list. |
68 |
|
69 |
Roman to Arabic pair list. |
70 |
-------------------------- |
71 |
|
72 |
Description |
73 |
~~~~~~~~~~~ |
74 |
|
75 |
Util to convert Roman to Arabic |
76 |
|
77 |
Usage |
78 |
~~~~~ |
79 |
|
80 |
:: |
81 |
|
82 |
ROM2ARAB() |
83 |
|
84 |
Author(s) |
85 |
~~~~~~~~~ |
86 |
|
87 |
Florent Chuffart |
88 |
|
89 |
R: Aggregate replicated sample's nucleosomes. |
90 |
|
91 |
Aggregate replicated sample's nucleosomes. |
92 |
------------------------------------------ |
93 |
|
94 |
Description |
95 |
~~~~~~~~~~~ |
96 |
|
97 |
This function aggregates nucleosome for replicated samples. It uses |
98 |
TemplateFilter ouput of each sample as replicate. Each sample owns a set |
99 |
of nucleosomes computed using TemplateFilter and ordered by the position |
100 |
of their center. Adajacent nucleosomes are compared two by two. |
101 |
Comparison is based on a log likelihood ratio score. The issue of |
102 |
comparison is adjacents nucleosomes merge or separation. Finally the |
103 |
function returns a list of clusters and all computed *lod\_scores*. Each |
104 |
cluster ows an attribute *wp* for "well positionned". This attribute is |
105 |
set as *TRUE* if the cluster is composed of exactly one nucleosomes of |
106 |
each sample. |
107 |
|
108 |
Usage |
109 |
~~~~~ |
110 |
|
111 |
:: |
112 |
|
113 |
aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07) |
114 |
|
115 |
Arguments |
116 |
~~~~~~~~~ |
117 |
|
118 |
``samples`` |
119 |
|
120 |
A list of samples. Each sample is a list like *sample = list(id=..., |
121 |
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
122 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. |
123 |
|
124 |
``lod_thres`` |
125 |
|
126 |
Log likelihood ration threshold. |
127 |
|
128 |
``coord_max`` |
129 |
|
130 |
A too big value to be a coord for a nucleosome lower bound. |
131 |
|
132 |
Value |
133 |
~~~~~ |
134 |
|
135 |
Returns a list of clusterized nucleosomes, and all computed lod scores. |
136 |
|
137 |
Author(s) |
138 |
~~~~~~~~~ |
139 |
|
140 |
Florent Chuffart |
141 |
|
142 |
Examples |
143 |
~~~~~~~~ |
144 |
|
145 |
:: |
146 |
|
147 |
# Dealing with a region of interest |
148 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301)) |
149 |
samples = list() |
150 |
for (i in 1:3) { |
151 |
# Create TF output |
152 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
153 |
outputs = dfadd(NULL,tf_nuc) |
154 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
155 |
# Generate corresponding reads |
156 |
nb_reads = round(runif(1,170,230)) |
157 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
158 |
u_reads = sort(unique(reads)) |
159 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
160 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
161 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
162 |
u_reads = u_reads + shifts |
163 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
164 |
"V2" = u_reads, |
165 |
"V3" = strands, |
166 |
"V4" = counts), stringsAsFactors=FALSE) |
167 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
168 |
} |
169 |
print(aggregate_intra_strain_nucs(samples)) |
170 |
|
171 |
R: Aligns nucleosomes between 2 strains. |
172 |
|
173 |
Aligns nucleosomes between 2 strains. |
174 |
------------------------------------- |
175 |
|
176 |
Description |
177 |
~~~~~~~~~~~ |
178 |
|
179 |
This function aligns nucs between two strains for a given genome region. |
180 |
|
181 |
Usage |
182 |
~~~~~ |
183 |
|
184 |
:: |
185 |
|
186 |
align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, |
187 |
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100, |
188 |
config = NULL, ...) |
189 |
|
190 |
Arguments |
191 |
~~~~~~~~~ |
192 |
|
193 |
``replicates`` |
194 |
|
195 |
Set of replicates, ideally 3 per strain. |
196 |
|
197 |
``wp_nucs_strain_ref1`` |
198 |
|
199 |
List of aggregates nucleosome for strain 1. If it's null this list will |
200 |
be computed. |
201 |
|
202 |
``wp_nucs_strain_ref2`` |
203 |
|
204 |
List of aggregates nucleosome for strain 2. If it's null this list will |
205 |
be computed. |
206 |
|
207 |
``corr_thres`` |
208 |
|
209 |
Correlation threshold. |
210 |
|
211 |
``lod_thres`` |
212 |
|
213 |
LOD cut off. |
214 |
|
215 |
``config`` |
216 |
|
217 |
GLOBAL config variable |
218 |
|
219 |
``...`` |
220 |
|
221 |
A list of parameters that will be passed to |
222 |
*aggregate\_intra\_strain\_nucs* if needed. |
223 |
|
224 |
Value |
225 |
~~~~~ |
226 |
|
227 |
Returns a list of clusterized nucleosomes, and all computed lod scores. |
228 |
|
229 |
Author(s) |
230 |
~~~~~~~~~ |
231 |
|
232 |
Florent Chuffart |
233 |
|
234 |
Examples |
235 |
~~~~~~~~ |
236 |
|
237 |
:: |
238 |
|
239 |
|
240 |
# Define new translate_roi function... |
241 |
translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) { |
242 |
return(roi) |
243 |
} |
244 |
# Binding it by uncomment follwing lines. |
245 |
unlockBinding("translate_roi", as.environment("package:nucleominer")) |
246 |
unlockBinding("translate_roi", getNamespace("nucleominer")) |
247 |
assign("translate_roi", translate_roi, "package:nucleominer") |
248 |
assign("translate_roi", translate_roi, getNamespace("nucleominer")) |
249 |
lockBinding("translate_roi", getNamespace("nucleominer")) |
250 |
lockBinding("translate_roi", as.environment("package:nucleominer")) |
251 |
|
252 |
# Dealing with a region of interest |
253 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1") |
254 |
roi2 = translate_roi(roi, roi$strain_ref1) |
255 |
replicates = list() |
256 |
for (j in 1:2) { |
257 |
samples = list() |
258 |
for (i in 1:3) { |
259 |
# Create TF output |
260 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
261 |
outputs = dfadd(NULL,tf_nuc) |
262 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
263 |
# Generate corresponding reads |
264 |
nb_reads = round(runif(1,170,230)) |
265 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
266 |
u_reads = sort(unique(reads)) |
267 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
268 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
269 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
270 |
u_reads = u_reads + shifts |
271 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
272 |
"V2" = u_reads, |
273 |
"V3" = strands, |
274 |
"V4" = counts), stringsAsFactors=FALSE) |
275 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
276 |
} |
277 |
replicates[[length(replicates) + 1]] = samples |
278 |
} |
279 |
print(align_inter_strain_nucs(replicates)) |
280 |
|
281 |
R: Launch deseq methods. |
282 |
|
283 |
Launch deseq methods. |
284 |
--------------------- |
285 |
|
286 |
Description |
287 |
~~~~~~~~~~~ |
288 |
|
289 |
This function is based on deseq example. It mormalizes data, fit data to |
290 |
GLM model with and without interaction term and compare the two |
291 |
l;=models. |
292 |
|
293 |
Usage |
294 |
~~~~~ |
295 |
|
296 |
:: |
297 |
|
298 |
analyse_design(snep_design, reads) |
299 |
|
300 |
Arguments |
301 |
~~~~~~~~~ |
302 |
|
303 |
``snep_design`` |
304 |
|
305 |
The design to considere. |
306 |
|
307 |
``reads`` |
308 |
|
309 |
The data to considere. |
310 |
|
311 |
Author(s) |
312 |
~~~~~~~~~ |
313 |
|
314 |
Florent Chuffart |
315 |
|
316 |
R: Stage replicates data |
317 |
|
318 |
Stage replicates data |
319 |
--------------------- |
320 |
|
321 |
Description |
322 |
~~~~~~~~~~~ |
323 |
|
324 |
This function loads in memory data corresponding to the given |
325 |
experiments. |
326 |
|
327 |
Usage |
328 |
~~~~~ |
329 |
|
330 |
:: |
331 |
|
332 |
build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE, |
333 |
all_samples, config = NULL) |
334 |
|
335 |
Arguments |
336 |
~~~~~~~~~ |
337 |
|
338 |
``expe`` |
339 |
|
340 |
a list of vector corresponding to vector of replicates. |
341 |
|
342 |
``roi`` |
343 |
|
344 |
the region that we are interested in. |
345 |
|
346 |
``only_fetch`` |
347 |
|
348 |
filter or not inputs. |
349 |
|
350 |
``get_genome`` |
351 |
|
352 |
Load or not corresponding genome. |
353 |
|
354 |
``all_samples`` |
355 |
|
356 |
Global list of samples. |
357 |
|
358 |
``config`` |
359 |
|
360 |
GLOBAL config variable. |
361 |
|
362 |
Author(s) |
363 |
~~~~~~~~~ |
364 |
|
365 |
Florent Chuffart |
366 |
|
367 |
Examples |
368 |
~~~~~~~~ |
369 |
|
370 |
:: |
371 |
|
372 |
# library(rjson) |
373 |
# library(nucleominer) |
374 |
# |
375 |
# # Read config file |
376 |
# json_conf_file = "nucleo_miner_config.json" |
377 |
# config = fromJSON(paste(readLines(json_conf_file), collapse="")) |
378 |
# # Read sample file |
379 |
# all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE) |
380 |
# # here are the sample ids in a list |
381 |
# expes = list(c(1)) |
382 |
# # here is the region that we wnt to see the coverage |
383 |
# cur = list(chr="8", begin=472000, end=474000, strain_ref="BY") |
384 |
# # it displays the corverage |
385 |
# replicates = build_replicates(expes, cur, all_samples=all_samples, config=config) |
386 |
# out = watch_samples(replicates, config$READ_LENGTH, |
387 |
# plot_coverage = TRUE, |
388 |
# plot_squared_reads = FALSE, |
389 |
# plot_ref_genome = FALSE, |
390 |
# plot_arrow_raw_reads = FALSE, |
391 |
# plot_arrow_nuc_reads = FALSE, |
392 |
# plot_gaussian_reads = FALSE, |
393 |
# plot_gaussian_unified_reads = FALSE, |
394 |
# plot_ellipse_nucs = FALSE, |
395 |
# plot_wp_nucs = FALSE, |
396 |
# plot_wp_nuc_model = FALSE, |
397 |
# plot_common_nucs = FALSE, |
398 |
# height = 50) |
399 |
|
400 |
R: Extract a sub part of the corresponding c2c file |
401 |
|
402 |
Extract a sub part of the corresponding c2c file |
403 |
------------------------------------------------ |
404 |
|
405 |
Description |
406 |
~~~~~~~~~~~ |
407 |
|
408 |
This fonction allow to acces to a specific part of the c2c file. |
409 |
|
410 |
Usage |
411 |
~~~~~ |
412 |
|
413 |
:: |
414 |
|
415 |
c2c_extraction(strain1, strain2, chr = NULL, lower_bound = NULL, |
416 |
upper_bound = NULL, config = NULL) |
417 |
|
418 |
Arguments |
419 |
~~~~~~~~~ |
420 |
|
421 |
``strain1`` |
422 |
|
423 |
the key strain |
424 |
|
425 |
``strain2`` |
426 |
|
427 |
the target strain |
428 |
|
429 |
``chr`` |
430 |
|
431 |
if defined, the c2c will filtered according to the chromosome value |
432 |
|
433 |
``lower_bound`` |
434 |
|
435 |
if defined, the c2c will filtered for part of the genome upper than |
436 |
lower\_bound |
437 |
|
438 |
``upper_bound`` |
439 |
|
440 |
if defined, the c2c will filtered for part of the genome lower than |
441 |
upper\_bound |
442 |
|
443 |
``config`` |
444 |
|
445 |
GLOBAL config variable |
446 |
|
447 |
Author(s) |
448 |
~~~~~~~~~ |
449 |
|
450 |
Florent Chuffart |
451 |
|
452 |
R: reformat an "apply manipulated" list of regions |
453 |
|
454 |
reformat an "apply manipulated" list of regions |
455 |
----------------------------------------------- |
456 |
|
457 |
Description |
458 |
~~~~~~~~~~~ |
459 |
|
460 |
Utils to reformat an "apply manipulated" list of regions |
461 |
|
462 |
Usage |
463 |
~~~~~ |
464 |
|
465 |
:: |
466 |
|
467 |
collapse_regions(regions) |
468 |
|
469 |
Arguments |
470 |
~~~~~~~~~ |
471 |
|
472 |
+---------------+----+ |
473 |
| ``regions`` | | |
474 |
+---------------+----+ |
475 |
|
476 |
Author(s) |
477 |
~~~~~~~~~ |
478 |
|
479 |
Florent Chuffart |
480 |
|
481 |
R: Compute Common Uninterrupted Regions (CUR) |
482 |
|
483 |
Compute Common Uninterrupted Regions (CUR) |
484 |
------------------------------------------ |
485 |
|
486 |
Description |
487 |
~~~~~~~~~~~ |
488 |
|
489 |
CURs are regions that can be aligned between the genomes |
490 |
|
491 |
Usage |
492 |
~~~~~ |
493 |
|
494 |
:: |
495 |
|
496 |
compute_inter_all_strain_curs(diff_allowed = 30, min_cur_width = 4000, |
497 |
config = NULL) |
498 |
|
499 |
Arguments |
500 |
~~~~~~~~~ |
501 |
|
502 |
``diff_allowed`` |
503 |
|
504 |
the maximum indel width allowe din a CUR |
505 |
|
506 |
``min_cur_width`` |
507 |
|
508 |
The minimum width of a CUR |
509 |
|
510 |
``config`` |
511 |
|
512 |
GLOBAL config variable |
513 |
|
514 |
Author(s) |
515 |
~~~~~~~~~ |
516 |
|
517 |
Florent Chuffart |
518 |
|
519 |
R: Crop bound of regions according to region of interest bound |
520 |
|
521 |
Crop bound of regions according to region of interest bound |
522 |
----------------------------------------------------------- |
523 |
|
524 |
Description |
525 |
~~~~~~~~~~~ |
526 |
|
527 |
The fucntion is no more necessary since we remove "big\_roi" bug in |
528 |
translate\_roi function. |
529 |
|
530 |
Usage |
531 |
~~~~~ |
532 |
|
533 |
:: |
534 |
|
535 |
crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL) |
536 |
|
537 |
Arguments |
538 |
~~~~~~~~~ |
539 |
|
540 |
``tmp_fuzzy_nucs`` |
541 |
|
542 |
the regiuons to be croped. |
543 |
|
544 |
``roi`` |
545 |
|
546 |
The region of interest. |
547 |
|
548 |
``strain`` |
549 |
|
550 |
The strain to consider. |
551 |
|
552 |
``config`` |
553 |
|
554 |
GLOBAL config variable |
555 |
|
556 |
Author(s) |
557 |
~~~~~~~~~ |
558 |
|
559 |
Florent Chuffart |
560 |
|
561 |
R: Adding list to a dataframe. |
562 |
|
563 |
Adding list to a dataframe. |
564 |
--------------------------- |
565 |
|
566 |
Description |
567 |
~~~~~~~~~~~ |
568 |
|
569 |
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. Return |
570 |
the dataframe *df*. |
571 |
|
572 |
Usage |
573 |
~~~~~ |
574 |
|
575 |
:: |
576 |
|
577 |
dfadd(df, l) |
578 |
|
579 |
Arguments |
580 |
~~~~~~~~~ |
581 |
|
582 |
``df`` |
583 |
|
584 |
A dataframe |
585 |
|
586 |
``l`` |
587 |
|
588 |
A list |
589 |
|
590 |
Value |
591 |
~~~~~ |
592 |
|
593 |
Return the dataframe *df*. |
594 |
|
595 |
Author(s) |
596 |
~~~~~~~~~ |
597 |
|
598 |
Florent Chuffart |
599 |
|
600 |
Examples |
601 |
~~~~~~~~ |
602 |
|
603 |
:: |
604 |
|
605 |
## Here dataframe is NULL |
606 |
print(df) |
607 |
df = NULL |
608 |
|
609 |
# Initialize df |
610 |
df = dfadd(df, list(key1 = "value1", key2 = "value2")) |
611 |
print(df) |
612 |
|
613 |
# Adding elements to df |
614 |
df = dfadd(df, list(key1 = "value1'", key2 = "value2'")) |
615 |
print(df) |
616 |
|
617 |
R: Prefetch data |
618 |
|
619 |
Prefetch data |
620 |
------------- |
621 |
|
622 |
Description |
623 |
~~~~~~~~~~~ |
624 |
|
625 |
Fetch and filter inputs and outpouts per region of interest. Organize it |
626 |
per replicates. |
627 |
|
628 |
Usage |
629 |
~~~~~ |
630 |
|
631 |
:: |
632 |
|
633 |
fetch_mnase_replicates(strain, roi, all_samples, config = NULL, |
634 |
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE) |
635 |
|
636 |
Arguments |
637 |
~~~~~~~~~ |
638 |
|
639 |
``strain`` |
640 |
|
641 |
The strain we want mnase replicatesList of replicates. Each replicates |
642 |
is a vector of sample ids. |
643 |
|
644 |
``roi`` |
645 |
|
646 |
Region of interest. |
647 |
|
648 |
``all_samples`` |
649 |
|
650 |
Global list of samples. |
651 |
|
652 |
``config`` |
653 |
|
654 |
GLOBAL config variable |
655 |
|
656 |
``only_fetch`` |
657 |
|
658 |
If TRUE, only fetch and not filtering. It is used tio load sample files |
659 |
into memory before forking. |
660 |
|
661 |
``get_genome`` |
662 |
|
663 |
If TRUE, load corresponding genome sequence. |
664 |
|
665 |
``get_ouputs`` |
666 |
|
667 |
If TRUE, get also ouput corresponding TF output files. |
668 |
|
669 |
Author(s) |
670 |
~~~~~~~~~ |
671 |
|
672 |
Florent Chuffart |
673 |
|
674 |
R: Filter TemplateFilter inputs |
675 |
|
676 |
Filter TemplateFilter inputs |
677 |
---------------------------- |
678 |
|
679 |
Description |
680 |
~~~~~~~~~~~ |
681 |
|
682 |
This function filters TemplateFilter inputs according genome area |
683 |
observed properties. It takes into account reads that are at the |
684 |
frontier of this area and the strand of these reads. |
685 |
|
686 |
Usage |
687 |
~~~~~ |
688 |
|
689 |
:: |
690 |
|
691 |
filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, |
692 |
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE) |
693 |
|
694 |
Arguments |
695 |
~~~~~~~~~ |
696 |
|
697 |
``inputs`` |
698 |
|
699 |
TF inputs to be filtered. |
700 |
|
701 |
``chr`` |
702 |
|
703 |
Chromosome observed, here chr is an integer. |
704 |
|
705 |
``x_min`` |
706 |
|
707 |
Coordinate of the first bp observed. |
708 |
|
709 |
``x_max`` |
710 |
|
711 |
Coordinate of the last bp observed. |
712 |
|
713 |
``nuc_width`` |
714 |
|
715 |
Nucleosome width. |
716 |
|
717 |
``only_f`` |
718 |
|
719 |
Filter only F reads. |
720 |
|
721 |
``only_r`` |
722 |
|
723 |
Filter only R reads. |
724 |
|
725 |
``filter_for_coverage`` |
726 |
|
727 |
Does it filter for plot coverage? |
728 |
|
729 |
Value |
730 |
~~~~~ |
731 |
|
732 |
Returns filtred inputs. |
733 |
|
734 |
Author(s) |
735 |
~~~~~~~~~ |
736 |
|
737 |
Florent Chuffart |
738 |
|
739 |
R: Filter TemplateFilter outputs |
740 |
|
741 |
Filter TemplateFilter outputs |
742 |
----------------------------- |
743 |
|
744 |
Description |
745 |
~~~~~~~~~~~ |
746 |
|
747 |
This function filters TemplateFilter outputs according, not only genome |
748 |
area observerved properties, but also correlation and overlap threshold. |
749 |
|
750 |
Usage |
751 |
~~~~~ |
752 |
|
753 |
:: |
754 |
|
755 |
filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, |
756 |
ol_bp = 59, corr_thres = 0.5) |
757 |
|
758 |
Arguments |
759 |
~~~~~~~~~ |
760 |
|
761 |
``tf_outputs`` |
762 |
|
763 |
TemplateFilter outputs. |
764 |
|
765 |
``chr`` |
766 |
|
767 |
Chromosome observed, here chr is an integer. |
768 |
|
769 |
``x_min`` |
770 |
|
771 |
Coordinate of the first bp observed. |
772 |
|
773 |
``x_max`` |
774 |
|
775 |
Coordinate of the last bp observed. |
776 |
|
777 |
``nuc_width`` |
778 |
|
779 |
Nucleosome width. |
780 |
|
781 |
``ol_bp`` |
782 |
|
783 |
Overlap Threshold. |
784 |
|
785 |
``corr_thres`` |
786 |
|
787 |
Correlation threshold. |
788 |
|
789 |
Value |
790 |
~~~~~ |
791 |
|
792 |
Returns filtered TemplateFilter Outputs |
793 |
|
794 |
Author(s) |
795 |
~~~~~~~~~ |
796 |
|
797 |
Florent Chuffart |
798 |
|
799 |
R: to flat aggregate\_intra\_strain\_nucs function output |
800 |
|
801 |
to flat aggregate\_intra\_strain\_nucs function output |
802 |
------------------------------------------------------ |
803 |
|
804 |
Description |
805 |
~~~~~~~~~~~ |
806 |
|
807 |
This function builds a dataframe of all clusters obtain from |
808 |
aggregate\_intra\_strain\_nucs function. |
809 |
|
810 |
Usage |
811 |
~~~~~ |
812 |
|
813 |
:: |
814 |
|
815 |
flat_aggregated_intra_strain_nucs(partial_strain_maps, roi_index) |
816 |
|
817 |
Arguments |
818 |
~~~~~~~~~ |
819 |
|
820 |
``partial_strain_maps`` |
821 |
|
822 |
the output of aggregate\_intra\_strain\_nucs function |
823 |
|
824 |
``roi_index`` |
825 |
|
826 |
the index of the roi involved |
827 |
|
828 |
Value |
829 |
~~~~~ |
830 |
|
831 |
Returns a dataframe of all clusters obtain from |
832 |
aggregate\_intra\_strain\_nucs function. |
833 |
|
834 |
Author(s) |
835 |
~~~~~~~~~ |
836 |
|
837 |
Florent Chuffart |
838 |
|
839 |
R: flat reads |
840 |
|
841 |
flat reads |
842 |
---------- |
843 |
|
844 |
Description |
845 |
~~~~~~~~~~~ |
846 |
|
847 |
Extract reads coordinates from TempleteFilter input sequence |
848 |
|
849 |
Usage |
850 |
~~~~~ |
851 |
|
852 |
:: |
853 |
|
854 |
flat_reads(reads, nuc_width) |
855 |
|
856 |
Arguments |
857 |
~~~~~~~~~ |
858 |
|
859 |
``reads`` |
860 |
|
861 |
TemplateFilter input reads |
862 |
|
863 |
``nuc_width`` |
864 |
|
865 |
Width used to shift F and R reads. |
866 |
|
867 |
Value |
868 |
~~~~~ |
869 |
|
870 |
Returns a list of F reads, R reads and joint/shifted F and R reads. |
871 |
|
872 |
Author(s) |
873 |
~~~~~~~~~ |
874 |
|
875 |
Florent Chuffart |
876 |
|
877 |
R: Retrieve Reads |
878 |
|
879 |
Retrieve Reads |
880 |
-------------- |
881 |
|
882 |
Description |
883 |
~~~~~~~~~~~ |
884 |
|
885 |
Retrieve reads for a given marker, combi, form. |
886 |
|
887 |
Usage |
888 |
~~~~~ |
889 |
|
890 |
:: |
891 |
|
892 |
get_all_reads(marker, combi, form = "wp", config = NULL) |
893 |
|
894 |
Arguments |
895 |
~~~~~~~~~ |
896 |
|
897 |
``marker`` |
898 |
|
899 |
The marker to considere. |
900 |
|
901 |
``combi`` |
902 |
|
903 |
The starin combination to considere. |
904 |
|
905 |
``form`` |
906 |
|
907 |
The nuc form to considere. |
908 |
|
909 |
``config`` |
910 |
|
911 |
GLOBAL config variable |
912 |
|
913 |
Author(s) |
914 |
~~~~~~~~~ |
915 |
|
916 |
Florent Chuffart |
917 |
|
918 |
R: get comp strand |
919 |
|
920 |
get comp strand |
921 |
--------------- |
922 |
|
923 |
Description |
924 |
~~~~~~~~~~~ |
925 |
|
926 |
Compute the complementatry strand. |
927 |
|
928 |
Usage |
929 |
~~~~~ |
930 |
|
931 |
:: |
932 |
|
933 |
get_comp_strand(strand) |
934 |
|
935 |
Arguments |
936 |
~~~~~~~~~ |
937 |
|
938 |
``strand`` |
939 |
|
940 |
The original strand. |
941 |
|
942 |
Value |
943 |
~~~~~ |
944 |
|
945 |
Returns the complementatry strand. |
946 |
|
947 |
Author(s) |
948 |
~~~~~~~~~ |
949 |
|
950 |
Florent Chuffart |
951 |
|
952 |
R: Build the design for deseq |
953 |
|
954 |
Build the design for deseq |
955 |
-------------------------- |
956 |
|
957 |
Description |
958 |
~~~~~~~~~~~ |
959 |
|
960 |
This function build the design according sample properties. |
961 |
|
962 |
Usage |
963 |
~~~~~ |
964 |
|
965 |
:: |
966 |
|
967 |
get_design(marker, combi, all_samples) |
968 |
|
969 |
Arguments |
970 |
~~~~~~~~~ |
971 |
|
972 |
``marker`` |
973 |
|
974 |
The marker to considere. |
975 |
|
976 |
``combi`` |
977 |
|
978 |
The starin combination to considere. |
979 |
|
980 |
``all_samples`` |
981 |
|
982 |
Global list of samples. |
983 |
|
984 |
Author(s) |
985 |
~~~~~~~~~ |
986 |
|
987 |
Florent Chuffart |
988 |
|
989 |
R: Compute the fuzzy list for a given strain. |
990 |
|
991 |
Compute the fuzzy list for a given strain. |
992 |
------------------------------------------ |
993 |
|
994 |
Description |
995 |
~~~~~~~~~~~ |
996 |
|
997 |
This function grabs the nucleosomes detxted by template\_filter that |
998 |
have been rejected bt aggregate\_intra\_strain\_nucs as well positions. |
999 |
|
1000 |
Usage |
1001 |
~~~~~ |
1002 |
|
1003 |
:: |
1004 |
|
1005 |
get_intra_strain_fuzzy(wp_map, roi, strain, config = NULL) |
1006 |
|
1007 |
Arguments |
1008 |
~~~~~~~~~ |
1009 |
|
1010 |
``wp_map`` |
1011 |
|
1012 |
Well positionned nucleosomes map. |
1013 |
|
1014 |
``roi`` |
1015 |
|
1016 |
The region of interest. |
1017 |
|
1018 |
``strain`` |
1019 |
|
1020 |
The strain we want to extracvt the fuzzy map. |
1021 |
|
1022 |
``config`` |
1023 |
|
1024 |
GLOBAL config variable. |
1025 |
|
1026 |
Author(s) |
1027 |
~~~~~~~~~ |
1028 |
|
1029 |
Florent Chuffart |
1030 |
|
1031 |
R: Compute the list of SNEPs for a given set of marker, strain... |
1032 |
|
1033 |
Compute the list of SNEPs for a given set of marker, strain combination and nuc form. |
1034 |
------------------------------------------------------------------------------------- |
1035 |
|
1036 |
Description |
1037 |
~~~~~~~~~~~ |
1038 |
|
1039 |
This function uses |
1040 |
|
1041 |
Usage |
1042 |
~~~~~ |
1043 |
|
1044 |
:: |
1045 |
|
1046 |
get_sneps(marker, combi, form, all_samples, config = NULL) |
1047 |
|
1048 |
Arguments |
1049 |
~~~~~~~~~ |
1050 |
|
1051 |
``marker`` |
1052 |
|
1053 |
The marker involved. |
1054 |
|
1055 |
``combi`` |
1056 |
|
1057 |
The strain combination involved. |
1058 |
|
1059 |
``form`` |
1060 |
|
1061 |
the nuc form involved. |
1062 |
|
1063 |
``all_samples`` |
1064 |
|
1065 |
Global list of samples. |
1066 |
|
1067 |
``config`` |
1068 |
|
1069 |
GLOBAL config variable |
1070 |
|
1071 |
Author(s) |
1072 |
~~~~~~~~~ |
1073 |
|
1074 |
Florent Chuffart |
1075 |
|
1076 |
Examples |
1077 |
~~~~~~~~ |
1078 |
|
1079 |
:: |
1080 |
|
1081 |
marker = "H3K4me1" |
1082 |
combi = c("BY", "YJM") |
1083 |
form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy" |
1084 |
# foo = get_sneps(marker, combi, form) |
1085 |
# foo = get_sneps("H4K12ac", c("BY", "RM"), "wp") |
1086 |
|
1087 |
R: Compute the unaligned nucleosomal regions (UNRs). |
1088 |
|
1089 |
Compute the unaligned nucleosomal regions (UNRs). |
1090 |
------------------------------------------------- |
1091 |
|
1092 |
Description |
1093 |
~~~~~~~~~~~ |
1094 |
|
1095 |
This function aggregate non common wp nucs for each strain and substract |
1096 |
common wp nucs. It does not take care about the size of the resulting |
1097 |
UNR. It will be take into account in the count read part og the |
1098 |
pipeline. |
1099 |
|
1100 |
Usage |
1101 |
~~~~~ |
1102 |
|
1103 |
:: |
1104 |
|
1105 |
get_unrs(combi, roi, roi_index, wp_maps, fuzzy_maps, common_nuc_results, |
1106 |
config = NULL) |
1107 |
|
1108 |
Arguments |
1109 |
~~~~~~~~~ |
1110 |
|
1111 |
``combi`` |
1112 |
|
1113 |
The strain combination to consider. |
1114 |
|
1115 |
``roi`` |
1116 |
|
1117 |
The region of interest. |
1118 |
|
1119 |
``roi_index`` |
1120 |
|
1121 |
The region of interest index. |
1122 |
|
1123 |
``wp_maps`` |
1124 |
|
1125 |
Well positionned nucleosomes maps. |
1126 |
|
1127 |
``fuzzy_maps`` |
1128 |
|
1129 |
Fuzzy nucleosomes maps. |
1130 |
|
1131 |
``common_nuc_results`` |
1132 |
|
1133 |
Common wp nuc maps |
1134 |
|
1135 |
``config`` |
1136 |
|
1137 |
GLOBAL config variable |
1138 |
|
1139 |
Author(s) |
1140 |
~~~~~~~~~ |
1141 |
|
1142 |
Florent Chuffart |
1143 |
|
1144 |
R: Returns the intersection of 2 list on regions. |
1145 |
|
1146 |
Returns the intersection of 2 list on regions. |
1147 |
---------------------------------------------- |
1148 |
|
1149 |
Description |
1150 |
~~~~~~~~~~~ |
1151 |
|
1152 |
This function... |
1153 |
|
1154 |
Usage |
1155 |
~~~~~ |
1156 |
|
1157 |
:: |
1158 |
|
1159 |
intersect_region(region1, region2) |
1160 |
|
1161 |
Arguments |
1162 |
~~~~~~~~~ |
1163 |
|
1164 |
``region1`` |
1165 |
|
1166 |
Original regions. |
1167 |
|
1168 |
``region2`` |
1169 |
|
1170 |
Regions to intersect. |
1171 |
|
1172 |
Author(s) |
1173 |
~~~~~~~~~ |
1174 |
|
1175 |
Florent Chuffart |
1176 |
|
1177 |
R: Likelihood ratio |
1178 |
|
1179 |
Likelihood ratio |
1180 |
---------------- |
1181 |
|
1182 |
Description |
1183 |
~~~~~~~~~~~ |
1184 |
|
1185 |
Compute the likelihood log of two set of value from two models Vs. a |
1186 |
unique model. |
1187 |
|
1188 |
Usage |
1189 |
~~~~~ |
1190 |
|
1191 |
:: |
1192 |
|
1193 |
lod_score_vecs(x, y) |
1194 |
|
1195 |
Arguments |
1196 |
~~~~~~~~~ |
1197 |
|
1198 |
``x`` |
1199 |
|
1200 |
First vector. |
1201 |
|
1202 |
``y`` |
1203 |
|
1204 |
Second vector. |
1205 |
|
1206 |
Value |
1207 |
~~~~~ |
1208 |
|
1209 |
Returns the likelihood ratio. |
1210 |
|
1211 |
Author(s) |
1212 |
~~~~~~~~~ |
1213 |
|
1214 |
Florent Chuffart |
1215 |
|
1216 |
Examples |
1217 |
~~~~~~~~ |
1218 |
|
1219 |
:: |
1220 |
|
1221 |
# LOD score for 2 set of values |
1222 |
mean1=5; sd1=2; card2 = 250 |
1223 |
mean2=6; sd2=3; card1 = 200 |
1224 |
x1 = rnorm(card1, mean1, sd1) |
1225 |
x2 = rnorm(card2, mean2, sd2) |
1226 |
min = floor(min(c(x1,x2))) |
1227 |
max = ceiling(max(c(x1,x2))) |
1228 |
hist(c(x1,x2), xlim=c(min, max), breaks=min:max) |
1229 |
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2) |
1230 |
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3) |
1231 |
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4) |
1232 |
lod_score_vecs(x1,x2) |
1233 |
|
1234 |
R: nm |
1235 |
|
1236 |
nm |
1237 |
-- |
1238 |
|
1239 |
Description |
1240 |
~~~~~~~~~~~ |
1241 |
|
1242 |
It provides a set of useful functions allowing to perform quantitative |
1243 |
analysis of nucleosomal epigenome. |
1244 |
|
1245 |
Details |
1246 |
~~~~~~~ |
1247 |
|
1248 |
+---------------+---------------------------------------------------+ |
1249 |
| Package: | nucleominer | |
1250 |
+---------------+---------------------------------------------------+ |
1251 |
| Maintainer: | Florent Chuffart <florent.chuffart@ens-lyon.fr> | |
1252 |
+---------------+---------------------------------------------------+ |
1253 |
| Author: | Florent Chuffart | |
1254 |
+---------------+---------------------------------------------------+ |
1255 |
| Version: | 2.3.35 | |
1256 |
+---------------+---------------------------------------------------+ |
1257 |
| License: | CeCILL | |
1258 |
+---------------+---------------------------------------------------+ |
1259 |
| Title: | nm | |
1260 |
+---------------+---------------------------------------------------+ |
1261 |
| Depends: | seqinr, plotrix, DESeq, cachecache | |
1262 |
+---------------+---------------------------------------------------+ |
1263 |
|
1264 |
Author(s) |
1265 |
~~~~~~~~~ |
1266 |
|
1267 |
Florent Chuffart |
1268 |
|
1269 |
R: Plot the distribution of reads. |
1270 |
|
1271 |
Plot the distribution of reads. |
1272 |
------------------------------- |
1273 |
|
1274 |
Description |
1275 |
~~~~~~~~~~~ |
1276 |
|
1277 |
This fuxntion use the deseq nomalization feature to compare |
1278 |
qualitatively the distribution. |
1279 |
|
1280 |
Usage |
1281 |
~~~~~ |
1282 |
|
1283 |
:: |
1284 |
|
1285 |
plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE) |
1286 |
|
1287 |
Arguments |
1288 |
~~~~~~~~~ |
1289 |
|
1290 |
``strain`` |
1291 |
|
1292 |
The strain to considere. |
1293 |
|
1294 |
``marker`` |
1295 |
|
1296 |
The marker to considere. |
1297 |
|
1298 |
``res`` |
1299 |
|
1300 |
Data |
1301 |
|
1302 |
``all_samples`` |
1303 |
|
1304 |
Global list of samples. |
1305 |
|
1306 |
``NEWPLOT`` |
1307 |
|
1308 |
If FALSE the curve will be add to the current plot. |
1309 |
|
1310 |
Author(s) |
1311 |
~~~~~~~~~ |
1312 |
|
1313 |
Florent Chuffart |
1314 |
|
1315 |
R: sign from strand |
1316 |
|
1317 |
sign from strand |
1318 |
---------------- |
1319 |
|
1320 |
Description |
1321 |
~~~~~~~~~~~ |
1322 |
|
1323 |
Get the sign of strand |
1324 |
|
1325 |
Usage |
1326 |
~~~~~ |
1327 |
|
1328 |
:: |
1329 |
|
1330 |
sign_from_strand(strands) |
1331 |
|
1332 |
Arguments |
1333 |
~~~~~~~~~ |
1334 |
|
1335 |
+---------------+----+ |
1336 |
| ``strands`` | | |
1337 |
+---------------+----+ |
1338 |
|
1339 |
Value |
1340 |
~~~~~ |
1341 |
|
1342 |
If strand in forward then returns 1 else returns -1 |
1343 |
|
1344 |
Author(s) |
1345 |
~~~~~~~~~ |
1346 |
|
1347 |
Florent Chuffart |
1348 |
|
1349 |
R: Substract to a list of regions an other list of regions that... |
1350 |
|
1351 |
Substract to a list of regions an other list of regions that intersect it. |
1352 |
-------------------------------------------------------------------------- |
1353 |
|
1354 |
Description |
1355 |
~~~~~~~~~~~ |
1356 |
|
1357 |
This fucntion embed a recursive part. It occurs when a substracted |
1358 |
region split an original region on two. |
1359 |
|
1360 |
Usage |
1361 |
~~~~~ |
1362 |
|
1363 |
:: |
1364 |
|
1365 |
substract_region(region1, region2) |
1366 |
|
1367 |
Arguments |
1368 |
~~~~~~~~~ |
1369 |
|
1370 |
``region1`` |
1371 |
|
1372 |
Original regions. |
1373 |
|
1374 |
``region2`` |
1375 |
|
1376 |
Regions to substract. |
1377 |
|
1378 |
Author(s) |
1379 |
~~~~~~~~~ |
1380 |
|
1381 |
Florent Chuffart |
1382 |
|
1383 |
R: Switch a pairlist |
1384 |
|
1385 |
Switch a pairlist |
1386 |
----------------- |
1387 |
|
1388 |
Description |
1389 |
~~~~~~~~~~~ |
1390 |
|
1391 |
Take a pairlist key:value and return the switched pairlist value:key. |
1392 |
|
1393 |
Usage |
1394 |
~~~~~ |
1395 |
|
1396 |
:: |
1397 |
|
1398 |
switch_pairlist(l) |
1399 |
|
1400 |
Arguments |
1401 |
~~~~~~~~~ |
1402 |
|
1403 |
``l`` |
1404 |
|
1405 |
The pairlist to switch. |
1406 |
|
1407 |
Value |
1408 |
~~~~~ |
1409 |
|
1410 |
The switched pairlist. |
1411 |
|
1412 |
Author(s) |
1413 |
~~~~~~~~~ |
1414 |
|
1415 |
Florent Chuffart |
1416 |
|
1417 |
Examples |
1418 |
~~~~~~~~ |
1419 |
|
1420 |
:: |
1421 |
|
1422 |
l = list(key1 = "value1", key2 = "value2") |
1423 |
print(switch_pairlist(l)) |
1424 |
|
1425 |
R: Translate a list of regions from a strain ref to another. |
1426 |
|
1427 |
Translate a list of regions from a strain ref to another. |
1428 |
--------------------------------------------------------- |
1429 |
|
1430 |
Description |
1431 |
~~~~~~~~~~~ |
1432 |
|
1433 |
This function is an eloborated call to translate\_roi. |
1434 |
|
1435 |
Usage |
1436 |
~~~~~ |
1437 |
|
1438 |
:: |
1439 |
|
1440 |
translate_regions(regions, combi, roi_index, config = NULL, roi) |
1441 |
|
1442 |
Arguments |
1443 |
~~~~~~~~~ |
1444 |
|
1445 |
``regions`` |
1446 |
|
1447 |
Regions to be translated. |
1448 |
|
1449 |
``combi`` |
1450 |
|
1451 |
Combination of strains. |
1452 |
|
1453 |
``roi_index`` |
1454 |
|
1455 |
The region of interest index. |
1456 |
|
1457 |
``config`` |
1458 |
|
1459 |
GLOBAL config variable |
1460 |
|
1461 |
``roi`` |
1462 |
|
1463 |
The region of interest. |
1464 |
|
1465 |
Author(s) |
1466 |
~~~~~~~~~ |
1467 |
|
1468 |
Florent Chuffart |
1469 |
|
1470 |
R: Translate coords of a genome region. |
1471 |
|
1472 |
Translate coords of a genome region. |
1473 |
------------------------------------ |
1474 |
|
1475 |
Description |
1476 |
~~~~~~~~~~~ |
1477 |
|
1478 |
This function is used in the examples, usualy you have to define your |
1479 |
own translation function and overwrite this one using *unlockBinding* |
1480 |
features. Please, refer to the example. |
1481 |
|
1482 |
Usage |
1483 |
~~~~~ |
1484 |
|
1485 |
:: |
1486 |
|
1487 |
translate_roi(roi, strain2, config = NULL, big_roi = NULL) |
1488 |
|
1489 |
Arguments |
1490 |
~~~~~~~~~ |
1491 |
|
1492 |
``roi`` |
1493 |
|
1494 |
Original genome region of interest. |
1495 |
|
1496 |
``strain2`` |
1497 |
|
1498 |
The strain in wich you want the genome region of interest. |
1499 |
|
1500 |
``config`` |
1501 |
|
1502 |
GLOBAL config variable |
1503 |
|
1504 |
``big_roi`` |
1505 |
|
1506 |
A largest region than roi use to filter c2c if it is needed. |
1507 |
|
1508 |
Author(s) |
1509 |
~~~~~~~~~ |
1510 |
|
1511 |
Florent Chuffart |
1512 |
|
1513 |
Examples |
1514 |
~~~~~~~~ |
1515 |
|
1516 |
:: |
1517 |
|
1518 |
# Define new translate_roi function... |
1519 |
translate_roi = function(roi, strain2, config) { |
1520 |
strain1 = roi$strain_ref |
1521 |
if (strain1 == strain2) { |
1522 |
return(roi) |
1523 |
} else { |
1524 |
stop("Here is my new translate_roi function...") |
1525 |
} |
1526 |
} |
1527 |
# Binding it by uncomment follwing lines. |
1528 |
# unlockBinding("translate_roi", as.environment("package:nm")) |
1529 |
# unlockBinding("translate_roi", getNamespace("nm")) |
1530 |
# assign("translate_roi", translate_roi, "package:nm") |
1531 |
# assign("translate_roi", translate_roi, getNamespace("nm")) |
1532 |
# lockBinding("translate_roi", getNamespace("nm")) |
1533 |
# lockBinding("translate_roi", as.environment("package:nm")) |
1534 |
|
1535 |
R: Aggregate regions that intersect themnselves. |
1536 |
|
1537 |
Aggregate regions that intersect themnselves. |
1538 |
--------------------------------------------- |
1539 |
|
1540 |
Description |
1541 |
~~~~~~~~~~~ |
1542 |
|
1543 |
This function is based on sort of lower bounds to detect regions that |
1544 |
intersect. We compare lower bound and upper bound of the porevious item. |
1545 |
This function embed a while loop and break break regions list become |
1546 |
stable. |
1547 |
|
1548 |
Usage |
1549 |
~~~~~ |
1550 |
|
1551 |
:: |
1552 |
|
1553 |
union_regions(regions) |
1554 |
|
1555 |
Arguments |
1556 |
~~~~~~~~~ |
1557 |
|
1558 |
``regions`` |
1559 |
|
1560 |
The Regions to be aggregated |
1561 |
|
1562 |
Author(s) |
1563 |
~~~~~~~~~ |
1564 |
|
1565 |
Florent Chuffart |
1566 |
|
1567 |
R: Watching analysis of samples |
1568 |
|
1569 |
Watching analysis of samples |
1570 |
---------------------------- |
1571 |
|
1572 |
Description |
1573 |
~~~~~~~~~~~ |
1574 |
|
1575 |
This function allows to view analysis for a particuler region of the |
1576 |
genome. |
1577 |
|
1578 |
Usage |
1579 |
~~~~~ |
1580 |
|
1581 |
:: |
1582 |
|
1583 |
watch_samples(replicates, read_length, plot_ref_genome = TRUE, |
1584 |
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, |
1585 |
plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, |
1586 |
plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, |
1587 |
change_col = TRUE, plot_wp_nucs = TRUE, plot_fuzzy_nucs = TRUE, |
1588 |
plot_wp_nuc_model = TRUE, plot_common_nucs = FALSE, plot_common_unrs = FALSE, |
1589 |
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, aggregated_intra_strain_nucs = NULL, |
1590 |
aligned_inter_strain_nucs = NULL, height = 10, config = NULL) |
1591 |
|
1592 |
Arguments |
1593 |
~~~~~~~~~ |
1594 |
|
1595 |
``replicates`` |
1596 |
|
1597 |
replicates under the form... |
1598 |
|
1599 |
``read_length`` |
1600 |
|
1601 |
length of the reads |
1602 |
|
1603 |
``plot_ref_genome`` |
1604 |
|
1605 |
Plot (or not) reference genome. |
1606 |
|
1607 |
``plot_arrow_raw_reads`` |
1608 |
|
1609 |
Plot (or not) arrows for raw reads. |
1610 |
|
1611 |
``plot_arrow_nuc_reads`` |
1612 |
|
1613 |
Plot (or not) arrows for reads aasiocied to a nucleosome. |
1614 |
|
1615 |
``plot_squared_reads`` |
1616 |
|
1617 |
Plot (or not) reads in the square fashion. |
1618 |
|
1619 |
``plot_coverage`` |
1620 |
|
1621 |
Plot (or not) reads in the covergae fashion. fashion. |
1622 |
|
1623 |
``plot_gaussian_reads`` |
1624 |
|
1625 |
Plot (or not) gaussian model of a F anf R reads. |
1626 |
|
1627 |
``plot_gaussian_unified_reads`` |
1628 |
|
1629 |
Plot (or not) gaussian model of a nuc. |
1630 |
|
1631 |
``plot_ellipse_nucs`` |
1632 |
|
1633 |
Plot (or not) ellipse for a nuc. |
1634 |
|
1635 |
``change_col`` |
1636 |
|
1637 |
Change the color of each nucleosome. |
1638 |
|
1639 |
``plot_wp_nucs`` |
1640 |
|
1641 |
Plot (or not) cluster of nucs |
1642 |
|
1643 |
``plot_fuzzy_nucs`` |
1644 |
|
1645 |
Plot (or not) cluster of fuzzy |
1646 |
|
1647 |
``plot_wp_nuc_model`` |
1648 |
|
1649 |
Plot (or not) gaussian model for a cluster of nucs |
1650 |
|
1651 |
``plot_common_nucs`` |
1652 |
|
1653 |
Plot (or not) aligned reads. |
1654 |
|
1655 |
``plot_common_unrs`` |
1656 |
|
1657 |
Plot (or not) unaligned nucleosomal refgions (UNRs). |
1658 |
|
1659 |
``plot_wp_nucs_4_nonmnase`` |
1660 |
|
1661 |
Plot (or not) clusters for non inputs samples. |
1662 |
|
1663 |
``plot_chain`` |
1664 |
|
1665 |
Plot (or not) clusterised nuceosomes between mnase samples. |
1666 |
|
1667 |
``aggregated_intra_strain_nucs`` |
1668 |
|
1669 |
list of aggregated intra strain nucs. If NULL, it will be computed. |
1670 |
|
1671 |
``aligned_inter_strain_nucs`` |
1672 |
|
1673 |
list of aligned inter strain nucs. If NULL, it will be computed. |
1674 |
|
1675 |
``height`` |
1676 |
|
1677 |
Number of reads in per million read for each sample, graphical parametre |
1678 |
for the y axis. |
1679 |
|
1680 |
``config`` |
1681 |
|
1682 |
GLOBAL config variable |
1683 |
|
1684 |
Author(s) |
1685 |
~~~~~~~~~ |
1686 |
|
1687 |
Florent Chuffart |