root / doc / sphinx_doc / build / text / ref.txt @ 9fdbfada
Historique | Voir | Annoter | Télécharger (32,36 ko)
1 |
|
---|---|
2 |
References |
3 |
********** |
4 |
|
5 |
|
6 |
Python Reference |
7 |
================ |
8 |
|
9 |
configurator.CSV_SAMPLE_FILE = None |
10 |
|
11 |
Path to cvs file that contains sample information. |
12 |
|
13 |
configurator.BOWTIE_BUILD_BIN = None |
14 |
|
15 |
Path for bowtie2 build bin. |
16 |
|
17 |
configurator.BOWTIE2_BIN = None |
18 |
|
19 |
Path for bowtie2 bin. |
20 |
|
21 |
configurator.SAMTOOLS_BIN = None |
22 |
|
23 |
Path for samtools bin. |
24 |
|
25 |
configurator.BEDTOOLS_BIN = None |
26 |
|
27 |
Path for bedtools bin. |
28 |
|
29 |
configurator.TF_BIN = None |
30 |
|
31 |
Path for TemplateFilter bin. |
32 |
|
33 |
configurator.TF_TEMPLATES_FILE = None |
34 |
|
35 |
Path for TemplateFilter templates file. |
36 |
|
37 |
configurator.ILLUMINA_OUTPUTFILE_PREFIX = None |
38 |
|
39 |
Prefix for Illumina fastq output files. |
40 |
|
41 |
configurator.INDEX_DIR = None |
42 |
|
43 |
Path for index dir. |
44 |
|
45 |
configurator.ALIGN_DIR = None |
46 |
|
47 |
Path for align dir. |
48 |
|
49 |
configurator.LOG_DIR = None |
50 |
|
51 |
Path for log dir |
52 |
|
53 |
configurator.CACHE_DIR = None |
54 |
|
55 |
Path for cache dir. |
56 |
|
57 |
configurator.RESULTS_DIR = None |
58 |
|
59 |
Path for results dir |
60 |
|
61 |
configurator.FASTA_REFERENCE_GENOME_FILES = None |
62 |
|
63 |
Dictionary where each fasta reference genomes is indexed by |
64 |
reference strain that it corresponds. |
65 |
|
66 |
configurator.AREA_BLACK_LIST = None |
67 |
|
68 |
Dictionary where keys are strain and values are black listed of |
69 |
geneome region. |
70 |
|
71 |
configurator.FASTA_INDEXES = None |
72 |
|
73 |
Dictionary of strain that indexes dictionaries where keys are |
74 |
chromosome reference from Fastq file and value are its |
75 |
correspondance for Templatefilter. |
76 |
|
77 |
configurator.C2C_FILES = None |
78 |
|
79 |
Dictionary where each strain combination indexes genome aligment. |
80 |
|
81 |
configurator.READ_LENGTH = None |
82 |
|
83 |
Length of Illumina reads. |
84 |
|
85 |
configurator.MAPQ_THRES = None |
86 |
|
87 |
Aligment quality thresold. |
88 |
|
89 |
configurator.TF_CORR = None |
90 |
|
91 |
TemplateFilter Template correlation threshold. |
92 |
|
93 |
configurator.TF_MINW = None |
94 |
|
95 |
TemplateFilter minimum width of a nucleosome. |
96 |
|
97 |
configurator.TF_MAXW = None |
98 |
|
99 |
TemplateFilter maximum width of a nucleosome. |
100 |
|
101 |
configurator.TF_OL = None |
102 |
|
103 |
TemplateFilter maximum allowed overlap for two nucleosomes. |
104 |
|
105 |
libcoverage.create_bowtie_index(strain, strain_fasta_ref, index_dir, bowtie_build_bin) |
106 |
|
107 |
Creates bowtie index for a strain *strain*. |
108 |
|
109 |
Parameters: |
110 |
* **strain** -- the strain reference. |
111 |
|
112 |
* **strain_fasta_ref** -- fasta reference genome. |
113 |
|
114 |
* **index_dir** -- directories where to put bowtie index. |
115 |
|
116 |
* **bowtie_build_bin** -- bowtie2 build binary. |
117 |
|
118 |
libcoverage.align_reads(sample, align_dir, log_dir, index_dir, illumina_outputfile_prefix, bowtie2_bin, samtools_bin, bedtools_bin) |
119 |
|
120 |
Aligns reads to reference genomes. It produces .sam files, that are |
121 |
converted to .bam, that are converted to .bed. |
122 |
|
123 |
Parameters: |
124 |
* **sample** -- a dict that describe a sample. |
125 |
|
126 |
* **align_dir** -- directory where aligned reads will be |
127 |
stored. |
128 |
|
129 |
* **log_dir** -- directory where logs will be stored. |
130 |
|
131 |
* **illumina_outputfile_prefix** -- prefix of Illumina |
132 |
sequencer fastq.gz output files. |
133 |
|
134 |
* **bowtie2_bin** -- bowtie2 binary. |
135 |
|
136 |
* **samtools_bin** -- samtools binary. |
137 |
|
138 |
* **bedtools_bin** -- bedtools binary. |
139 |
|
140 |
* **index_dir** -- bowtie index directory. |
141 |
|
142 |
libcoverage.split_fr_4_TF(sample, align_dir, fasta_indexes, area_black_list, read_length, mapq_thres) |
143 |
|
144 |
Create TempleFilter input files form bed files. This function |
145 |
appends in two times. First, it collects reads from bed files and |
146 |
feeds a datastructure |
147 |
|
148 |
Parameters: |
149 |
* **sample** -- a dict that describe a sample. |
150 |
|
151 |
* **align_dir** -- directory where aligned reads will be |
152 |
stored. |
153 |
|
154 |
* **fasta_index** -- the chr reference from the illumina |
155 |
output file. |
156 |
|
157 |
* **area_black_list** -- the description of genome that will |
158 |
be omit. |
159 |
|
160 |
* **read_length** -- Length of Illumina reads. |
161 |
|
162 |
* **mapq_thres** -- mapping quality criterion threshold, see |
163 |
MAPQ in BED/BAM file format. |
164 |
|
165 |
libcoverage.template_filter(sample, align_dir, log_dir, tf_bin, tf_templates_file, corr, minw, maxw, ol) |
166 |
|
167 |
Run TemplateFilter on a specifi sample. It produces .tab file. |
168 |
|
169 |
Parameters: |
170 |
* **sample** -- a dict that describe a sample. |
171 |
|
172 |
* **align_dir** -- directory where aligned reads will be |
173 |
stored. |
174 |
|
175 |
* **log_dir** -- directory where logs will be stored. |
176 |
|
177 |
* **tf_bin** -- path to the TemplateFilter binary. |
178 |
|
179 |
* **tf_templates_file** -- path to the TemplateFilter |
180 |
templates file. |
181 |
|
182 |
* **corr** -- correlation threshold transmits to |
183 |
TemplateFilter. |
184 |
|
185 |
* **minw** -- minimum width of a nuc, transmits to |
186 |
TemplateFilter. |
187 |
|
188 |
* **maxw** -- maximum width of a nuc, transmits to |
189 |
TemplateFilter. |
190 |
|
191 |
* **ol** -- maximum overlaps for 2 nuc, transmits to |
192 |
TemplateFilter. |
193 |
|
194 |
|
195 |
R Reference |
196 |
=========== |
197 |
|
198 |
|
199 |
Arabic to Roman pair list. |
200 |
-------------------------- |
201 |
|
202 |
|
203 |
Description |
204 |
~~~~~~~~~~~ |
205 |
|
206 |
Util to convert Arabicto Roman |
207 |
|
208 |
|
209 |
Usage |
210 |
~~~~~ |
211 |
|
212 |
ARAB2ROM() |
213 |
|
214 |
|
215 |
Author(s) |
216 |
~~~~~~~~~ |
217 |
|
218 |
Florent Chuffart |
219 |
|
220 |
R: False Discovery Rate |
221 |
|
222 |
|
223 |
False Discovery Rate |
224 |
-------------------- |
225 |
|
226 |
|
227 |
Description |
228 |
~~~~~~~~~~~ |
229 |
|
230 |
From a vector x of independent p-values, extract the cutoff |
231 |
corresponding to the specified FDR. See Benjamini & Hochberg 1995 |
232 |
paper |
233 |
|
234 |
|
235 |
Usage |
236 |
~~~~~ |
237 |
|
238 |
FDR(x, FDR) |
239 |
|
240 |
|
241 |
Arguments |
242 |
~~~~~~~~~ |
243 |
|
244 |
"x" |
245 |
|
246 |
A vector x of independent p-values. |
247 |
|
248 |
"FDR" |
249 |
|
250 |
The specified FDR. |
251 |
|
252 |
|
253 |
Value |
254 |
~~~~~ |
255 |
|
256 |
Return the the corresponding cutoff. |
257 |
|
258 |
|
259 |
Author(s) |
260 |
~~~~~~~~~ |
261 |
|
262 |
Gael Yvert, Florent Chuffart |
263 |
|
264 |
|
265 |
Examples |
266 |
~~~~~~~~ |
267 |
|
268 |
print("example") |
269 |
|
270 |
R: Roman to Arabic pair list. |
271 |
|
272 |
|
273 |
Roman to Arabic pair list. |
274 |
-------------------------- |
275 |
|
276 |
|
277 |
Description |
278 |
~~~~~~~~~~~ |
279 |
|
280 |
Util to convert Roman to Arabic |
281 |
|
282 |
|
283 |
Usage |
284 |
~~~~~ |
285 |
|
286 |
ROM2ARAB() |
287 |
|
288 |
|
289 |
Author(s) |
290 |
~~~~~~~~~ |
291 |
|
292 |
Florent Chuffart |
293 |
|
294 |
R: Aggregate replicated sample's nucleosomes. |
295 |
|
296 |
|
297 |
Aggregate replicated sample's nucleosomes. |
298 |
------------------------------------------ |
299 |
|
300 |
|
301 |
Description |
302 |
~~~~~~~~~~~ |
303 |
|
304 |
This function aggregates nucleosome for replicated samples. It uses |
305 |
TemplateFilter ouput of each sample as replicate. Each sample owns a |
306 |
set of nucleosomes computed using TemplateFilter and ordered by the |
307 |
position of their center. Adajacent nucleosomes are compared two by |
308 |
two. Comparison is based on a log likelihood ratio score. The issue of |
309 |
comparison is adjacents nucleosomes merge or separation. Finally the |
310 |
function returns a list of clusters and all computed *lod_scores*. |
311 |
Each cluster ows an attribute *wp* for "well positionned". This |
312 |
attribute is set as *TRUE* if the cluster is composed of exactly one |
313 |
nucleosomes of each sample. |
314 |
|
315 |
|
316 |
Usage |
317 |
~~~~~ |
318 |
|
319 |
aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07) |
320 |
|
321 |
|
322 |
Arguments |
323 |
~~~~~~~~~ |
324 |
|
325 |
"samples" |
326 |
|
327 |
A list of samples. Each sample is a list like *sample = list(id=..., |
328 |
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
329 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. |
330 |
|
331 |
"lod_thres" |
332 |
|
333 |
Log likelihood ration threshold. |
334 |
|
335 |
"coord_max" |
336 |
|
337 |
A too big value to be a coord for a nucleosome lower bound. |
338 |
|
339 |
|
340 |
Value |
341 |
~~~~~ |
342 |
|
343 |
Returns a list of clusterized nucleosomes, and all computed lod |
344 |
scores. |
345 |
|
346 |
|
347 |
Author(s) |
348 |
~~~~~~~~~ |
349 |
|
350 |
Florent Chuffart |
351 |
|
352 |
|
353 |
Examples |
354 |
~~~~~~~~ |
355 |
|
356 |
# Dealing with a region of interest |
357 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301)) |
358 |
samples = list() |
359 |
for (i in 1:3) { |
360 |
# Create TF output |
361 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
362 |
outputs = dfadd(NULL,tf_nuc) |
363 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
364 |
# Generate corresponding reads |
365 |
nb_reads = round(runif(1,170,230)) |
366 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
367 |
u_reads = sort(unique(reads)) |
368 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
369 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
370 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
371 |
u_reads = u_reads + shifts |
372 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
373 |
"V2" = u_reads, |
374 |
"V3" = strands, |
375 |
"V4" = counts), stringsAsFactors=FALSE) |
376 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
377 |
} |
378 |
print(aggregate_intra_strain_nucs(samples)) |
379 |
|
380 |
R: Aligns nucleosomes between 2 strains. |
381 |
|
382 |
|
383 |
Aligns nucleosomes between 2 strains. |
384 |
------------------------------------- |
385 |
|
386 |
|
387 |
Description |
388 |
~~~~~~~~~~~ |
389 |
|
390 |
This function aligns nucs between two strains for a given genome |
391 |
region. |
392 |
|
393 |
|
394 |
Usage |
395 |
~~~~~ |
396 |
|
397 |
align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, |
398 |
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100, |
399 |
config = NULL, ...) |
400 |
|
401 |
|
402 |
Arguments |
403 |
~~~~~~~~~ |
404 |
|
405 |
"replicates" |
406 |
|
407 |
Set of replicates, ideally 3 per strain. |
408 |
|
409 |
"wp_nucs_strain_ref1" |
410 |
|
411 |
List of aggregates nucleosome for strain 1. If it's null this list |
412 |
will be computed. |
413 |
|
414 |
"wp_nucs_strain_ref2" |
415 |
|
416 |
List of aggregates nucleosome for strain 2. If it's null this list |
417 |
will be computed. |
418 |
|
419 |
"corr_thres" |
420 |
|
421 |
Correlation threshold. |
422 |
|
423 |
"lod_thres" |
424 |
|
425 |
LOD cut off. |
426 |
|
427 |
"config" |
428 |
|
429 |
GLOBAL config variable |
430 |
|
431 |
"..." |
432 |
|
433 |
A list of parameters that will be passed to |
434 |
*aggregate_intra_strain_nucs* if needed. |
435 |
|
436 |
|
437 |
Value |
438 |
~~~~~ |
439 |
|
440 |
Returns a list of clusterized nucleosomes, and all computed lod |
441 |
scores. |
442 |
|
443 |
|
444 |
Author(s) |
445 |
~~~~~~~~~ |
446 |
|
447 |
Florent Chuffart |
448 |
|
449 |
|
450 |
Examples |
451 |
~~~~~~~~ |
452 |
|
453 |
# Define new translate_roi function... |
454 |
translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) { |
455 |
return(roi) |
456 |
} |
457 |
# Binding it by uncomment follwing lines. |
458 |
unlockBinding("translate_roi", as.environment("package:nucleominer")) |
459 |
unlockBinding("translate_roi", getNamespace("nucleominer")) |
460 |
assign("translate_roi", translate_roi, "package:nucleominer") |
461 |
assign("translate_roi", translate_roi, getNamespace("nucleominer")) |
462 |
lockBinding("translate_roi", getNamespace("nucleominer")) |
463 |
lockBinding("translate_roi", as.environment("package:nucleominer")) |
464 |
|
465 |
# Dealing with a region of interest |
466 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1") |
467 |
roi2 = translate_roi(roi, roi$strain_ref1) |
468 |
replicates = list() |
469 |
for (j in 1:2) { |
470 |
samples = list() |
471 |
for (i in 1:3) { |
472 |
# Create TF output |
473 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
474 |
outputs = dfadd(NULL,tf_nuc) |
475 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
476 |
# Generate corresponding reads |
477 |
nb_reads = round(runif(1,170,230)) |
478 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
479 |
u_reads = sort(unique(reads)) |
480 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
481 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
482 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
483 |
u_reads = u_reads + shifts |
484 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
485 |
"V2" = u_reads, |
486 |
"V3" = strands, |
487 |
"V4" = counts), stringsAsFactors=FALSE) |
488 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
489 |
} |
490 |
replicates[[length(replicates) + 1]] = samples |
491 |
} |
492 |
print(align_inter_strain_nucs(replicates)) |
493 |
|
494 |
R: Launch deseq methods. |
495 |
|
496 |
|
497 |
Launch deseq methods. |
498 |
--------------------- |
499 |
|
500 |
|
501 |
Description |
502 |
~~~~~~~~~~~ |
503 |
|
504 |
This function is based on deseq example. It mormalizes data, fit data |
505 |
to GLM model with and without interaction term and compare the two |
506 |
l;=models. |
507 |
|
508 |
|
509 |
Usage |
510 |
~~~~~ |
511 |
|
512 |
analyse_design(snep_design, reads) |
513 |
|
514 |
|
515 |
Arguments |
516 |
~~~~~~~~~ |
517 |
|
518 |
"snep_design" |
519 |
|
520 |
The design to considere. |
521 |
|
522 |
"reads" |
523 |
|
524 |
The data to considere. |
525 |
|
526 |
|
527 |
Author(s) |
528 |
~~~~~~~~~ |
529 |
|
530 |
Florent Chuffart |
531 |
|
532 |
R: Stage replicates data |
533 |
|
534 |
|
535 |
Stage replicates data |
536 |
--------------------- |
537 |
|
538 |
|
539 |
Description |
540 |
~~~~~~~~~~~ |
541 |
|
542 |
This function loads in memory data corresponding to the given |
543 |
experiments. |
544 |
|
545 |
|
546 |
Usage |
547 |
~~~~~ |
548 |
|
549 |
build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE, |
550 |
all_samples, config = NULL) |
551 |
|
552 |
|
553 |
Arguments |
554 |
~~~~~~~~~ |
555 |
|
556 |
"expe" |
557 |
|
558 |
a list of vector corresponding to vector of replicates. |
559 |
|
560 |
"roi" |
561 |
|
562 |
the region that we are interested in. |
563 |
|
564 |
"only_fetch" |
565 |
|
566 |
filter or not inputs. |
567 |
|
568 |
"get_genome" |
569 |
|
570 |
Load or not corresponding genome. |
571 |
|
572 |
"all_samples" |
573 |
|
574 |
Global list of samples. |
575 |
|
576 |
"config" |
577 |
|
578 |
GLOBAL config variable. |
579 |
|
580 |
|
581 |
Author(s) |
582 |
~~~~~~~~~ |
583 |
|
584 |
Florent Chuffart |
585 |
|
586 |
|
587 |
Examples |
588 |
~~~~~~~~ |
589 |
|
590 |
# library(rjson) |
591 |
# library(nucleominer) |
592 |
# |
593 |
# # Read config file |
594 |
# json_conf_file = "nucleo_miner_config.json" |
595 |
# config = fromJSON(paste(readLines(json_conf_file), collapse="")) |
596 |
# # Read sample file |
597 |
# all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE) |
598 |
# # here are the sample ids in a list |
599 |
# expes = list(c(1)) |
600 |
# # here is the region that we wnt to see the coverage |
601 |
# cur = list(chr="8", begin=472000, end=474000, strain_ref="BY") |
602 |
# # it displays the corverage |
603 |
# replicates = build_replicates(expes, cur, all_samples=all_samples, config=config) |
604 |
# out = watch_samples(replicates, config$READ_LENGTH, |
605 |
# plot_coverage = TRUE, |
606 |
# plot_squared_reads = FALSE, |
607 |
# plot_ref_genome = FALSE, |
608 |
# plot_arrow_raw_reads = FALSE, |
609 |
# plot_arrow_nuc_reads = FALSE, |
610 |
# plot_gaussian_reads = FALSE, |
611 |
# plot_gaussian_unified_reads = FALSE, |
612 |
# plot_ellipse_nucs = FALSE, |
613 |
# plot_wp_nucs = FALSE, |
614 |
# plot_wp_nuc_model = FALSE, |
615 |
# plot_common_nucs = FALSE, |
616 |
# height = 50) |
617 |
|
618 |
R: reformat an "apply manipulated" list of regions |
619 |
|
620 |
|
621 |
reformat an "apply manipulated" list of regions |
622 |
----------------------------------------------- |
623 |
|
624 |
|
625 |
Description |
626 |
~~~~~~~~~~~ |
627 |
|
628 |
Utils to reformat an "apply manipulated" list of regions |
629 |
|
630 |
|
631 |
Usage |
632 |
~~~~~ |
633 |
|
634 |
collapse_regions(regions) |
635 |
|
636 |
|
637 |
Arguments |
638 |
~~~~~~~~~ |
639 |
|
640 |
+-----------------+------+ |
641 |
+-----------------+------+ |
642 |
|
643 |
|
644 |
Author(s) |
645 |
~~~~~~~~~ |
646 |
|
647 |
Florent Chuffart |
648 |
|
649 |
R: Compute Common Uninterrupted Regions (CUR) |
650 |
|
651 |
|
652 |
Compute Common Uninterrupted Regions (CUR) |
653 |
------------------------------------------ |
654 |
|
655 |
|
656 |
Description |
657 |
~~~~~~~~~~~ |
658 |
|
659 |
CURs are regions that can be aligned between the genomes |
660 |
|
661 |
|
662 |
Usage |
663 |
~~~~~ |
664 |
|
665 |
compute_inter_all_strain_curs(diff_allowed = 10, min_cur_width = 200, |
666 |
config = NULL, plot = FALSE) |
667 |
|
668 |
|
669 |
Arguments |
670 |
~~~~~~~~~ |
671 |
|
672 |
"diff_allowed" |
673 |
|
674 |
the maximum indel width allowe din a CUR |
675 |
|
676 |
"min_cur_width" |
677 |
|
678 |
The minimum width of a CUR |
679 |
|
680 |
"config" |
681 |
|
682 |
GLOBAL config variable |
683 |
|
684 |
"plot" |
685 |
|
686 |
Plot CURs or not |
687 |
|
688 |
|
689 |
Author(s) |
690 |
~~~~~~~~~ |
691 |
|
692 |
Florent Chuffart |
693 |
|
694 |
R: Crop bound of regions according to region of interest bound |
695 |
|
696 |
|
697 |
Crop bound of regions according to region of interest bound |
698 |
----------------------------------------------------------- |
699 |
|
700 |
|
701 |
Description |
702 |
~~~~~~~~~~~ |
703 |
|
704 |
The fucntion is no more necessary since we remove "big_roi" bug in |
705 |
translate_roi function. |
706 |
|
707 |
|
708 |
Usage |
709 |
~~~~~ |
710 |
|
711 |
crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL) |
712 |
|
713 |
|
714 |
Arguments |
715 |
~~~~~~~~~ |
716 |
|
717 |
"tmp_fuzzy_nucs" |
718 |
|
719 |
the regiuons to be croped. |
720 |
|
721 |
"roi" |
722 |
|
723 |
The region of interest. |
724 |
|
725 |
"strain" |
726 |
|
727 |
The strain to consider. |
728 |
|
729 |
"config" |
730 |
|
731 |
GLOBAL config variable |
732 |
|
733 |
|
734 |
Author(s) |
735 |
~~~~~~~~~ |
736 |
|
737 |
Florent Chuffart |
738 |
|
739 |
R: Adding list to a dataframe. |
740 |
|
741 |
|
742 |
Adding list to a dataframe. |
743 |
--------------------------- |
744 |
|
745 |
|
746 |
Description |
747 |
~~~~~~~~~~~ |
748 |
|
749 |
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. |
750 |
Return the dataframe *df*. |
751 |
|
752 |
|
753 |
Usage |
754 |
~~~~~ |
755 |
|
756 |
dfadd(df, l) |
757 |
|
758 |
|
759 |
Arguments |
760 |
~~~~~~~~~ |
761 |
|
762 |
"df" |
763 |
|
764 |
A dataframe |
765 |
|
766 |
"l" |
767 |
|
768 |
A list |
769 |
|
770 |
|
771 |
Value |
772 |
~~~~~ |
773 |
|
774 |
Return the dataframe *df*. |
775 |
|
776 |
|
777 |
Author(s) |
778 |
~~~~~~~~~ |
779 |
|
780 |
Florent Chuffart |
781 |
|
782 |
|
783 |
Examples |
784 |
~~~~~~~~ |
785 |
|
786 |
## Here dataframe is NULL |
787 |
print(df) |
788 |
df = NULL |
789 |
|
790 |
# Initialize df |
791 |
df = dfadd(df, list(key1 = "value1", key2 = "value2")) |
792 |
print(df) |
793 |
|
794 |
# Adding elements to df |
795 |
df = dfadd(df, list(key1 = "value1'", key2 = "value2'")) |
796 |
print(df) |
797 |
|
798 |
R: Extract wp nucs from nuc map. |
799 |
|
800 |
|
801 |
Extract wp nucs from nuc map. |
802 |
----------------------------- |
803 |
|
804 |
|
805 |
Description |
806 |
~~~~~~~~~~~ |
807 |
|
808 |
Function based on common wp nuc index and roi_index. |
809 |
|
810 |
|
811 |
Usage |
812 |
~~~~~ |
813 |
|
814 |
extract_wp(strain_maps, roi_index, strain, tmp_common_nucs) |
815 |
|
816 |
|
817 |
Arguments |
818 |
~~~~~~~~~ |
819 |
|
820 |
"strain_maps" |
821 |
|
822 |
Nuc maps. |
823 |
|
824 |
"roi_index" |
825 |
|
826 |
The region of interest index. |
827 |
|
828 |
"strain" |
829 |
|
830 |
The strain to consider. |
831 |
|
832 |
"tmp_common_nucs" |
833 |
|
834 |
the list of wp nucs. |
835 |
|
836 |
|
837 |
Author(s) |
838 |
~~~~~~~~~ |
839 |
|
840 |
Florent Chuffart |
841 |
|
842 |
R: Prefetch data |
843 |
|
844 |
|
845 |
Prefetch data |
846 |
------------- |
847 |
|
848 |
|
849 |
Description |
850 |
~~~~~~~~~~~ |
851 |
|
852 |
Fetch and filter inputs and outpouts per region of interest. Organize |
853 |
it per replicates. |
854 |
|
855 |
|
856 |
Usage |
857 |
~~~~~ |
858 |
|
859 |
fetch_mnase_replicates(strain, roi, all_samples, config = NULL, |
860 |
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE) |
861 |
|
862 |
|
863 |
Arguments |
864 |
~~~~~~~~~ |
865 |
|
866 |
"strain" |
867 |
|
868 |
The strain we want mnase replicatesList of replicates. Each replicates |
869 |
is a vector of sample ids. |
870 |
|
871 |
"roi" |
872 |
|
873 |
Region of interest. |
874 |
|
875 |
"all_samples" |
876 |
|
877 |
Global list of samples. |
878 |
|
879 |
"config" |
880 |
|
881 |
GLOBAL config variable |
882 |
|
883 |
"only_fetch" |
884 |
|
885 |
If TRUE, only fetch and not filtering. It is used tio load sample |
886 |
files into memory before forking. |
887 |
|
888 |
"get_genome" |
889 |
|
890 |
If TRUE, load corresponding genome sequence. |
891 |
|
892 |
"get_ouputs" |
893 |
|
894 |
If TRUE, get also ouput corresponding TF output files. |
895 |
|
896 |
|
897 |
Author(s) |
898 |
~~~~~~~~~ |
899 |
|
900 |
Florent Chuffart |
901 |
|
902 |
R: Filter TemplateFilter inputs |
903 |
|
904 |
|
905 |
Filter TemplateFilter inputs |
906 |
---------------------------- |
907 |
|
908 |
|
909 |
Description |
910 |
~~~~~~~~~~~ |
911 |
|
912 |
This function filters TemplateFilter inputs according genome area |
913 |
observed properties. It takes into account reads that are at the |
914 |
frontier of this area and the strand of these reads. |
915 |
|
916 |
|
917 |
Usage |
918 |
~~~~~ |
919 |
|
920 |
filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, |
921 |
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE) |
922 |
|
923 |
|
924 |
Arguments |
925 |
~~~~~~~~~ |
926 |
|
927 |
"inputs" |
928 |
|
929 |
TF inputs to be filtered. |
930 |
|
931 |
"chr" |
932 |
|
933 |
Chromosome observed, here chr is an integer. |
934 |
|
935 |
"x_min" |
936 |
|
937 |
Coordinate of the first bp observed. |
938 |
|
939 |
"x_max" |
940 |
|
941 |
Coordinate of the last bp observed. |
942 |
|
943 |
"nuc_width" |
944 |
|
945 |
Nucleosome width. |
946 |
|
947 |
"only_f" |
948 |
|
949 |
Filter only F reads. |
950 |
|
951 |
"only_r" |
952 |
|
953 |
Filter only R reads. |
954 |
|
955 |
"filter_for_coverage" |
956 |
|
957 |
Does it filter for plot coverage? |
958 |
|
959 |
|
960 |
Value |
961 |
~~~~~ |
962 |
|
963 |
Returns filtred inputs. |
964 |
|
965 |
|
966 |
Author(s) |
967 |
~~~~~~~~~ |
968 |
|
969 |
Florent Chuffart |
970 |
|
971 |
R: Filter TemplateFilter outputs |
972 |
|
973 |
|
974 |
Filter TemplateFilter outputs |
975 |
----------------------------- |
976 |
|
977 |
|
978 |
Description |
979 |
~~~~~~~~~~~ |
980 |
|
981 |
This function filters TemplateFilter outputs according, not only |
982 |
genome area observerved properties, but also correlation and overlap |
983 |
threshold. |
984 |
|
985 |
|
986 |
Usage |
987 |
~~~~~ |
988 |
|
989 |
filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, |
990 |
ol_bp = 59, corr_thres = 0.5) |
991 |
|
992 |
|
993 |
Arguments |
994 |
~~~~~~~~~ |
995 |
|
996 |
"tf_outputs" |
997 |
|
998 |
TemplateFilter outputs. |
999 |
|
1000 |
"chr" |
1001 |
|
1002 |
Chromosome observed, here chr is an integer. |
1003 |
|
1004 |
"x_min" |
1005 |
|
1006 |
Coordinate of the first bp observed. |
1007 |
|
1008 |
"x_max" |
1009 |
|
1010 |
Coordinate of the last bp observed. |
1011 |
|
1012 |
"nuc_width" |
1013 |
|
1014 |
Nucleosome width. |
1015 |
|
1016 |
"ol_bp" |
1017 |
|
1018 |
Overlap Threshold. |
1019 |
|
1020 |
"corr_thres" |
1021 |
|
1022 |
Correlation threshold. |
1023 |
|
1024 |
|
1025 |
Value |
1026 |
~~~~~ |
1027 |
|
1028 |
Returns filtered TemplateFilter Outputs |
1029 |
|
1030 |
|
1031 |
Author(s) |
1032 |
~~~~~~~~~ |
1033 |
|
1034 |
Florent Chuffart |
1035 |
|
1036 |
R: to flat aggregate_intra_strain_nucs function output |
1037 |
|
1038 |
|
1039 |
to flat aggregate_intra_strain_nucs function output |
1040 |
--------------------------------------------------- |
1041 |
|
1042 |
|
1043 |
Description |
1044 |
~~~~~~~~~~~ |
1045 |
|
1046 |
This function builds a dataframe of all clusters obtain from |
1047 |
aggregate_intra_strain_nucs function. |
1048 |
|
1049 |
|
1050 |
Usage |
1051 |
~~~~~ |
1052 |
|
1053 |
flat_aggregated_intra_strain_nucs(partial_strain_maps, roi_index) |
1054 |
|
1055 |
|
1056 |
Arguments |
1057 |
~~~~~~~~~ |
1058 |
|
1059 |
"partial_strain_maps" |
1060 |
|
1061 |
the output of aggregate_intra_strain_nucs function |
1062 |
|
1063 |
"roi_index" |
1064 |
|
1065 |
the index of the roi involved |
1066 |
|
1067 |
|
1068 |
Value |
1069 |
~~~~~ |
1070 |
|
1071 |
Returns a dataframe of all clusters obtain from |
1072 |
aggregate_intra_strain_nucs function. |
1073 |
|
1074 |
|
1075 |
Author(s) |
1076 |
~~~~~~~~~ |
1077 |
|
1078 |
Florent Chuffart |
1079 |
|
1080 |
R: flat reads |
1081 |
|
1082 |
|
1083 |
flat reads |
1084 |
---------- |
1085 |
|
1086 |
|
1087 |
Description |
1088 |
~~~~~~~~~~~ |
1089 |
|
1090 |
Extract reads coordinates from TempleteFilter input sequence |
1091 |
|
1092 |
|
1093 |
Usage |
1094 |
~~~~~ |
1095 |
|
1096 |
flat_reads(reads, nuc_width) |
1097 |
|
1098 |
|
1099 |
Arguments |
1100 |
~~~~~~~~~ |
1101 |
|
1102 |
"reads" |
1103 |
|
1104 |
TemplateFilter input reads |
1105 |
|
1106 |
"nuc_width" |
1107 |
|
1108 |
Width used to shift F and R reads. |
1109 |
|
1110 |
|
1111 |
Value |
1112 |
~~~~~ |
1113 |
|
1114 |
Returns a list of F reads, R reads and joint/shifted F and R reads. |
1115 |
|
1116 |
|
1117 |
Author(s) |
1118 |
~~~~~~~~~ |
1119 |
|
1120 |
Florent Chuffart |
1121 |
|
1122 |
R: Retrieve Reads |
1123 |
|
1124 |
|
1125 |
Retrieve Reads |
1126 |
-------------- |
1127 |
|
1128 |
|
1129 |
Description |
1130 |
~~~~~~~~~~~ |
1131 |
|
1132 |
Retrieve reads for a given marker, combi, form. |
1133 |
|
1134 |
|
1135 |
Usage |
1136 |
~~~~~ |
1137 |
|
1138 |
get_all_reads(marker, combi, form = "wp", config = NULL) |
1139 |
|
1140 |
|
1141 |
Arguments |
1142 |
~~~~~~~~~ |
1143 |
|
1144 |
"marker" |
1145 |
|
1146 |
The marker to considere. |
1147 |
|
1148 |
"combi" |
1149 |
|
1150 |
The starin combination to considere. |
1151 |
|
1152 |
"form" |
1153 |
|
1154 |
The nuc form to considere. |
1155 |
|
1156 |
"config" |
1157 |
|
1158 |
GLOBAL config variable |
1159 |
|
1160 |
|
1161 |
Author(s) |
1162 |
~~~~~~~~~ |
1163 |
|
1164 |
Florent Chuffart |
1165 |
|
1166 |
R: get comp strand |
1167 |
|
1168 |
|
1169 |
get comp strand |
1170 |
--------------- |
1171 |
|
1172 |
|
1173 |
Description |
1174 |
~~~~~~~~~~~ |
1175 |
|
1176 |
Compute the complementatry strand. |
1177 |
|
1178 |
|
1179 |
Usage |
1180 |
~~~~~ |
1181 |
|
1182 |
get_comp_strand(strand) |
1183 |
|
1184 |
|
1185 |
Arguments |
1186 |
~~~~~~~~~ |
1187 |
|
1188 |
"strand" |
1189 |
|
1190 |
The original strand. |
1191 |
|
1192 |
|
1193 |
Value |
1194 |
~~~~~ |
1195 |
|
1196 |
Returns the complementatry strand. |
1197 |
|
1198 |
|
1199 |
Author(s) |
1200 |
~~~~~~~~~ |
1201 |
|
1202 |
Florent Chuffart |
1203 |
|
1204 |
R: Build the design for deseq |
1205 |
|
1206 |
|
1207 |
Build the design for deseq |
1208 |
-------------------------- |
1209 |
|
1210 |
|
1211 |
Description |
1212 |
~~~~~~~~~~~ |
1213 |
|
1214 |
This function build the design according sample properties. |
1215 |
|
1216 |
|
1217 |
Usage |
1218 |
~~~~~ |
1219 |
|
1220 |
get_design(marker, combi, all_samples) |
1221 |
|
1222 |
|
1223 |
Arguments |
1224 |
~~~~~~~~~ |
1225 |
|
1226 |
"marker" |
1227 |
|
1228 |
The marker to considere. |
1229 |
|
1230 |
"combi" |
1231 |
|
1232 |
The starin combination to considere. |
1233 |
|
1234 |
"all_samples" |
1235 |
|
1236 |
Global list of samples. |
1237 |
|
1238 |
|
1239 |
Author(s) |
1240 |
~~~~~~~~~ |
1241 |
|
1242 |
Florent Chuffart |
1243 |
|
1244 |
R: Compute the fuzzy nucs. |
1245 |
|
1246 |
|
1247 |
Compute the fuzzy nucs. |
1248 |
----------------------- |
1249 |
|
1250 |
|
1251 |
Description |
1252 |
~~~~~~~~~~~ |
1253 |
|
1254 |
This function aggregate non common wp nucs for each strain and |
1255 |
substract common wp nucs. It does not take care about the size of the |
1256 |
resulting fuzzy regions. It will be take into account in the count |
1257 |
read part og the pipeline. |
1258 |
|
1259 |
|
1260 |
Usage |
1261 |
~~~~~ |
1262 |
|
1263 |
get_fuzzy(combi, roi, roi_index, strain_maps, common_nuc_results, |
1264 |
config = NULL) |
1265 |
|
1266 |
|
1267 |
Arguments |
1268 |
~~~~~~~~~ |
1269 |
|
1270 |
"combi" |
1271 |
|
1272 |
The strain combination to consider. |
1273 |
|
1274 |
"roi" |
1275 |
|
1276 |
The region of interest. |
1277 |
|
1278 |
"roi_index" |
1279 |
|
1280 |
The region of interest index. |
1281 |
|
1282 |
"strain_maps" |
1283 |
|
1284 |
Nuc maps. |
1285 |
|
1286 |
"common_nuc_results" |
1287 |
|
1288 |
Common wp nuc maps |
1289 |
|
1290 |
"config" |
1291 |
|
1292 |
GLOBAL config variable |
1293 |
|
1294 |
|
1295 |
Author(s) |
1296 |
~~~~~~~~~ |
1297 |
|
1298 |
Florent Chuffart |
1299 |
|
1300 |
R: Compute the list of SNEPs for a given set of marker, strain... |
1301 |
|
1302 |
|
1303 |
Compute the list of SNEPs for a given set of marker, strain combination and nuc form. |
1304 |
------------------------------------------------------------------------------------- |
1305 |
|
1306 |
|
1307 |
Description |
1308 |
~~~~~~~~~~~ |
1309 |
|
1310 |
This function uses |
1311 |
|
1312 |
|
1313 |
Usage |
1314 |
~~~~~ |
1315 |
|
1316 |
get_sneps(marker, combi, form, all_samples, config = NULL) |
1317 |
|
1318 |
|
1319 |
Arguments |
1320 |
~~~~~~~~~ |
1321 |
|
1322 |
"marker" |
1323 |
|
1324 |
The marker involved. |
1325 |
|
1326 |
"combi" |
1327 |
|
1328 |
The strain combination involved. |
1329 |
|
1330 |
"form" |
1331 |
|
1332 |
the nuc form involved. |
1333 |
|
1334 |
"all_samples" |
1335 |
|
1336 |
Global list of samples. |
1337 |
|
1338 |
"config" |
1339 |
|
1340 |
GLOBAL config variable |
1341 |
|
1342 |
|
1343 |
Author(s) |
1344 |
~~~~~~~~~ |
1345 |
|
1346 |
Florent Chuffart |
1347 |
|
1348 |
|
1349 |
Examples |
1350 |
~~~~~~~~ |
1351 |
|
1352 |
marker = "H3K4me1" |
1353 |
combi = c("BY", "YJM") |
1354 |
form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy" |
1355 |
# foo = get_sneps(marker, combi, form) |
1356 |
# foo = get_sneps("H4K12ac", c("BY", "RM"), "wp") |
1357 |
|
1358 |
R: Likelihood ratio |
1359 |
|
1360 |
|
1361 |
Likelihood ratio |
1362 |
---------------- |
1363 |
|
1364 |
|
1365 |
Description |
1366 |
~~~~~~~~~~~ |
1367 |
|
1368 |
Compute the likelihood log of two set of value from two models Vs. a |
1369 |
unique model. |
1370 |
|
1371 |
|
1372 |
Usage |
1373 |
~~~~~ |
1374 |
|
1375 |
lod_score_vecs(x, y) |
1376 |
|
1377 |
|
1378 |
Arguments |
1379 |
~~~~~~~~~ |
1380 |
|
1381 |
"x" |
1382 |
|
1383 |
First vector. |
1384 |
|
1385 |
"y" |
1386 |
|
1387 |
Second vector. |
1388 |
|
1389 |
|
1390 |
Value |
1391 |
~~~~~ |
1392 |
|
1393 |
Returns the likelihood ratio. |
1394 |
|
1395 |
|
1396 |
Author(s) |
1397 |
~~~~~~~~~ |
1398 |
|
1399 |
Florent Chuffart |
1400 |
|
1401 |
|
1402 |
Examples |
1403 |
~~~~~~~~ |
1404 |
|
1405 |
# LOD score for 2 set of values |
1406 |
mean1=5; sd1=2; card2 = 250 |
1407 |
mean2=6; sd2=3; card1 = 200 |
1408 |
x1 = rnorm(card1, mean1, sd1) |
1409 |
x2 = rnorm(card2, mean2, sd2) |
1410 |
min = floor(min(c(x1,x2))) |
1411 |
max = ceiling(max(c(x1,x2))) |
1412 |
hist(c(x1,x2), xlim=c(min, max), breaks=min:max) |
1413 |
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2) |
1414 |
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3) |
1415 |
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4) |
1416 |
lod_score_vecs(x1,x2) |
1417 |
|
1418 |
R: nm |
1419 |
|
1420 |
|
1421 |
nm |
1422 |
-- |
1423 |
|
1424 |
|
1425 |
Description |
1426 |
~~~~~~~~~~~ |
1427 |
|
1428 |
It provides a set of useful functions allowing to perform quantitative |
1429 |
analysis of nucleosomal epigenome. |
1430 |
|
1431 |
|
1432 |
Details |
1433 |
~~~~~~~ |
1434 |
|
1435 |
+-----------------+-----------------------------------------------------+ |
1436 |
| Package: | nucleominer | |
1437 |
+-----------------+-----------------------------------------------------+ |
1438 |
| Maintainer: | Florent Chuffart <florent.chuffart@ens-lyon.fr> | |
1439 |
+-----------------+-----------------------------------------------------+ |
1440 |
| Author: | Florent Chuffart | |
1441 |
+-----------------+-----------------------------------------------------+ |
1442 |
| Version: | 2.3.29 | |
1443 |
+-----------------+-----------------------------------------------------+ |
1444 |
| License: | CeCILL | |
1445 |
+-----------------+-----------------------------------------------------+ |
1446 |
| Title: | nm | |
1447 |
+-----------------+-----------------------------------------------------+ |
1448 |
| Depends: | seqinr, plotrix, DESeq, cachecache | |
1449 |
+-----------------+-----------------------------------------------------+ |
1450 |
|
1451 |
|
1452 |
Author(s) |
1453 |
~~~~~~~~~ |
1454 |
|
1455 |
Florent Chuffart |
1456 |
|
1457 |
R: Performaing ANOVAs |
1458 |
|
1459 |
|
1460 |
Performaing ANOVAs |
1461 |
------------------ |
1462 |
|
1463 |
|
1464 |
Description |
1465 |
~~~~~~~~~~~ |
1466 |
|
1467 |
Counts reads and Performs ANOVAS for each common nucleosomes involved. |
1468 |
|
1469 |
|
1470 |
Usage |
1471 |
~~~~~ |
1472 |
|
1473 |
perform_anovas(replicates, aligned_inter_strain_nucs, inputs_name = "Mnase_Seq", |
1474 |
plot_anova_boxes = FALSE) |
1475 |
|
1476 |
|
1477 |
Arguments |
1478 |
~~~~~~~~~ |
1479 |
|
1480 |
"replicates" |
1481 |
|
1482 |
Set of replicates, each replicate is a list of samples (ideally 3). |
1483 |
Each sample is a list like *sample = list(id=..., marker=..., |
1484 |
strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
1485 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. In the |
1486 |
*perform_anovas* contexte, we need 4 replicates (4 * (3 samples)): 2 |
1487 |
strains * (1 marker + 1 input (Mnase_Seq)). |
1488 |
|
1489 |
"aligned_inter_strain_nucs" |
1490 |
|
1491 |
List of common nucleosomes. |
1492 |
|
1493 |
"inputs_name" |
1494 |
|
1495 |
Name of the input. |
1496 |
|
1497 |
"plot_anova_boxes" |
1498 |
|
1499 |
Plot (or not) boxplot for each nuc. |
1500 |
|
1501 |
|
1502 |
Value |
1503 |
~~~~~ |
1504 |
|
1505 |
Returns ANOVA results and comunted reads. |
1506 |
|
1507 |
|
1508 |
Author(s) |
1509 |
~~~~~~~~~ |
1510 |
|
1511 |
Florent Chuffart |
1512 |
|
1513 |
R: Plot the distribution of reads. |
1514 |
|
1515 |
|
1516 |
Plot the distribution of reads. |
1517 |
------------------------------- |
1518 |
|
1519 |
|
1520 |
Description |
1521 |
~~~~~~~~~~~ |
1522 |
|
1523 |
This fuxntion use the deseq nomalization feature to compare |
1524 |
qualitatively the distribution. |
1525 |
|
1526 |
|
1527 |
Usage |
1528 |
~~~~~ |
1529 |
|
1530 |
plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE) |
1531 |
|
1532 |
|
1533 |
Arguments |
1534 |
~~~~~~~~~ |
1535 |
|
1536 |
"strain" |
1537 |
|
1538 |
The strain to considere. |
1539 |
|
1540 |
"marker" |
1541 |
|
1542 |
The marker to considere. |
1543 |
|
1544 |
"res" |
1545 |
|
1546 |
Data |
1547 |
|
1548 |
"all_samples" |
1549 |
|
1550 |
Global list of samples. |
1551 |
|
1552 |
"NEWPLOT" |
1553 |
|
1554 |
If FALSE the curve will be add to the current plot. |
1555 |
|
1556 |
|
1557 |
Author(s) |
1558 |
~~~~~~~~~ |
1559 |
|
1560 |
Florent Chuffart |
1561 |
|
1562 |
R: Remove wp nucs from common nucs list. |
1563 |
|
1564 |
|
1565 |
Remove wp nucs from common nucs list. |
1566 |
------------------------------------- |
1567 |
|
1568 |
|
1569 |
Description |
1570 |
~~~~~~~~~~~ |
1571 |
|
1572 |
It is based on common wp nucs index on nucs and region. |
1573 |
|
1574 |
|
1575 |
Usage |
1576 |
~~~~~ |
1577 |
|
1578 |
remove_aligned_wp(strain_maps, roi_index, tmp_common_nucs, strain) |
1579 |
|
1580 |
|
1581 |
Arguments |
1582 |
~~~~~~~~~ |
1583 |
|
1584 |
"strain_maps" |
1585 |
|
1586 |
Nuc maps. |
1587 |
|
1588 |
"roi_index" |
1589 |
|
1590 |
The region of interest index. |
1591 |
|
1592 |
"tmp_common_nucs" |
1593 |
|
1594 |
the list of wp nucs. |
1595 |
|
1596 |
"strain" |
1597 |
|
1598 |
The strain to consider. |
1599 |
|
1600 |
|
1601 |
Author(s) |
1602 |
~~~~~~~~~ |
1603 |
|
1604 |
Florent Chuffart |
1605 |
|
1606 |
R: sign from strand |
1607 |
|
1608 |
|
1609 |
sign from strand |
1610 |
---------------- |
1611 |
|
1612 |
|
1613 |
Description |
1614 |
~~~~~~~~~~~ |
1615 |
|
1616 |
Get the sign of strand |
1617 |
|
1618 |
|
1619 |
Usage |
1620 |
~~~~~ |
1621 |
|
1622 |
sign_from_strand(strands) |
1623 |
|
1624 |
|
1625 |
Arguments |
1626 |
~~~~~~~~~ |
1627 |
|
1628 |
+-----------------+------+ |
1629 |
+-----------------+------+ |
1630 |
|
1631 |
|
1632 |
Value |
1633 |
~~~~~ |
1634 |
|
1635 |
If strand in forward then returns 1 else returns -1 |
1636 |
|
1637 |
|
1638 |
Author(s) |
1639 |
~~~~~~~~~ |
1640 |
|
1641 |
Florent Chuffart |
1642 |
|
1643 |
R: Substract to a list of regions an other list of regions that... |
1644 |
|
1645 |
|
1646 |
Substract to a list of regions an other list of regions that intersect it. |
1647 |
-------------------------------------------------------------------------- |
1648 |
|
1649 |
|
1650 |
Description |
1651 |
~~~~~~~~~~~ |
1652 |
|
1653 |
This fucntion embed a recursive part. It occurs when a substracted |
1654 |
region split an original region on two. |
1655 |
|
1656 |
|
1657 |
Usage |
1658 |
~~~~~ |
1659 |
|
1660 |
substract_region(region1, region2) |
1661 |
|
1662 |
|
1663 |
Arguments |
1664 |
~~~~~~~~~ |
1665 |
|
1666 |
"region1" |
1667 |
|
1668 |
Original regions. |
1669 |
|
1670 |
"region2" |
1671 |
|
1672 |
Regions to substract. |
1673 |
|
1674 |
|
1675 |
Author(s) |
1676 |
~~~~~~~~~ |
1677 |
|
1678 |
Florent Chuffart |
1679 |
|
1680 |
R: Switch a pairlist |
1681 |
|
1682 |
|
1683 |
Switch a pairlist |
1684 |
----------------- |
1685 |
|
1686 |
|
1687 |
Description |
1688 |
~~~~~~~~~~~ |
1689 |
|
1690 |
Take a pairlist key:value and return the switched pairlist value:key. |
1691 |
|
1692 |
|
1693 |
Usage |
1694 |
~~~~~ |
1695 |
|
1696 |
switch_pairlist(l) |
1697 |
|
1698 |
|
1699 |
Arguments |
1700 |
~~~~~~~~~ |
1701 |
|
1702 |
"l" |
1703 |
|
1704 |
The pairlist to switch. |
1705 |
|
1706 |
|
1707 |
Value |
1708 |
~~~~~ |
1709 |
|
1710 |
The switched pairlist. |
1711 |
|
1712 |
|
1713 |
Author(s) |
1714 |
~~~~~~~~~ |
1715 |
|
1716 |
Florent Chuffart |
1717 |
|
1718 |
|
1719 |
Examples |
1720 |
~~~~~~~~ |
1721 |
|
1722 |
l = list(key1 = "value1", key2 = "value2") |
1723 |
print(switch_pairlist(l)) |
1724 |
|
1725 |
R: Translate a list of regions from a strain ref to another. |
1726 |
|
1727 |
|
1728 |
Translate a list of regions from a strain ref to another. |
1729 |
--------------------------------------------------------- |
1730 |
|
1731 |
|
1732 |
Description |
1733 |
~~~~~~~~~~~ |
1734 |
|
1735 |
This function is an eloborated call to translate_roi. |
1736 |
|
1737 |
|
1738 |
Usage |
1739 |
~~~~~ |
1740 |
|
1741 |
translate_regions(regions, combi, roi_index, config = NULL, roi) |
1742 |
|
1743 |
|
1744 |
Arguments |
1745 |
~~~~~~~~~ |
1746 |
|
1747 |
"regions" |
1748 |
|
1749 |
Regions to be translated. |
1750 |
|
1751 |
"combi" |
1752 |
|
1753 |
Combination of strains. |
1754 |
|
1755 |
"roi_index" |
1756 |
|
1757 |
The region of interest index. |
1758 |
|
1759 |
"config" |
1760 |
|
1761 |
GLOBAL config variable |
1762 |
|
1763 |
"roi" |
1764 |
|
1765 |
The region of interest. |
1766 |
|
1767 |
|
1768 |
Author(s) |
1769 |
~~~~~~~~~ |
1770 |
|
1771 |
Florent Chuffart |
1772 |
|
1773 |
R: Translate coords of a genome region. |
1774 |
|
1775 |
|
1776 |
Translate coords of a genome region. |
1777 |
------------------------------------ |
1778 |
|
1779 |
|
1780 |
Description |
1781 |
~~~~~~~~~~~ |
1782 |
|
1783 |
This function is used in the examples, usualy you have to define your |
1784 |
own translation function and overwrite this one using *unlockBinding* |
1785 |
features. Please, refer to the example. |
1786 |
|
1787 |
|
1788 |
Usage |
1789 |
~~~~~ |
1790 |
|
1791 |
translate_roi(roi, strain2, config = NULL, big_roi = NULL) |
1792 |
|
1793 |
|
1794 |
Arguments |
1795 |
~~~~~~~~~ |
1796 |
|
1797 |
"roi" |
1798 |
|
1799 |
Original genome region of interest. |
1800 |
|
1801 |
"strain2" |
1802 |
|
1803 |
The strain in wich you want the genome region of interest. |
1804 |
|
1805 |
"config" |
1806 |
|
1807 |
GLOBAL config variable |
1808 |
|
1809 |
"big_roi" |
1810 |
|
1811 |
A largest region than roi use to filter c2c if it is needed. |
1812 |
|
1813 |
|
1814 |
Author(s) |
1815 |
~~~~~~~~~ |
1816 |
|
1817 |
Florent Chuffart |
1818 |
|
1819 |
|
1820 |
Examples |
1821 |
~~~~~~~~ |
1822 |
|
1823 |
# Define new translate_roi function... |
1824 |
translate_roi = function(roi, strain2, config) { |
1825 |
strain1 = roi$strain_ref |
1826 |
if (strain1 == strain2) { |
1827 |
return(roi) |
1828 |
} else { |
1829 |
stop("Here is my new translate_roi function...") |
1830 |
} |
1831 |
} |
1832 |
# Binding it by uncomment follwing lines. |
1833 |
# unlockBinding("translate_roi", as.environment("package:nm")) |
1834 |
# unlockBinding("translate_roi", getNamespace("nm")) |
1835 |
# assign("translate_roi", translate_roi, "package:nm") |
1836 |
# assign("translate_roi", translate_roi, getNamespace("nm")) |
1837 |
# lockBinding("translate_roi", getNamespace("nm")) |
1838 |
# lockBinding("translate_roi", as.environment("package:nm")) |
1839 |
|
1840 |
R: Aggregate regions that intersect themnselves. |
1841 |
|
1842 |
|
1843 |
Aggregate regions that intersect themnselves. |
1844 |
--------------------------------------------- |
1845 |
|
1846 |
|
1847 |
Description |
1848 |
~~~~~~~~~~~ |
1849 |
|
1850 |
This function is based on sort of lower bounds to detect regions that |
1851 |
intersect. We compare lower bound and upper bound of the porevious |
1852 |
item. This function embed a while loop and break break regions list |
1853 |
become stable. |
1854 |
|
1855 |
|
1856 |
Usage |
1857 |
~~~~~ |
1858 |
|
1859 |
union_regions(regions) |
1860 |
|
1861 |
|
1862 |
Arguments |
1863 |
~~~~~~~~~ |
1864 |
|
1865 |
"regions" |
1866 |
|
1867 |
The Regions to be aggregated |
1868 |
|
1869 |
|
1870 |
Author(s) |
1871 |
~~~~~~~~~ |
1872 |
|
1873 |
Florent Chuffart |
1874 |
|
1875 |
R: Watching analysis of samples |
1876 |
|
1877 |
|
1878 |
Watching analysis of samples |
1879 |
---------------------------- |
1880 |
|
1881 |
|
1882 |
Description |
1883 |
~~~~~~~~~~~ |
1884 |
|
1885 |
This function allows to view analysis for a particuler region of the |
1886 |
genome. |
1887 |
|
1888 |
|
1889 |
Usage |
1890 |
~~~~~ |
1891 |
|
1892 |
watch_samples(replicates, read_length, plot_ref_genome = TRUE, |
1893 |
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, |
1894 |
plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, |
1895 |
plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, |
1896 |
change_col = TRUE, plot_wp_nucs = TRUE, plot_wp_nuc_model = TRUE, |
1897 |
plot_common_nucs = TRUE, plot_anovas = FALSE, plot_anova_boxes = FALSE, |
1898 |
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, aggregated_intra_strain_nucs = NULL, |
1899 |
aligned_inter_strain_nucs = NULL, height = 10, config = NULL) |
1900 |
|
1901 |
|
1902 |
Arguments |
1903 |
~~~~~~~~~ |
1904 |
|
1905 |
"replicates" |
1906 |
|
1907 |
replicates under the form... |
1908 |
|
1909 |
"read_length" |
1910 |
|
1911 |
length of the reads |
1912 |
|
1913 |
"plot_ref_genome" |
1914 |
|
1915 |
Plot (or not) reference genome. |
1916 |
|
1917 |
"plot_arrow_raw_reads" |
1918 |
|
1919 |
Plot (or not) arrows for raw reads. |
1920 |
|
1921 |
"plot_arrow_nuc_reads" |
1922 |
|
1923 |
Plot (or not) arrows for reads aasiocied to a nucleosome. |
1924 |
|
1925 |
"plot_squared_reads" |
1926 |
|
1927 |
Plot (or not) reads in the square fashion. |
1928 |
|
1929 |
"plot_coverage" |
1930 |
|
1931 |
Plot (or not) reads in the covergae fashion. fashion. |
1932 |
|
1933 |
"plot_gaussian_reads" |
1934 |
|
1935 |
Plot (or not) gaussian model of a F anf R reads. |
1936 |
|
1937 |
"plot_gaussian_unified_reads" |
1938 |
|
1939 |
Plot (or not) gaussian model of a nuc. |
1940 |
|
1941 |
"plot_ellipse_nucs" |
1942 |
|
1943 |
Plot (or not) ellipse for a nuc. |
1944 |
|
1945 |
"change_col" |
1946 |
|
1947 |
Change the color of each nucleosome. |
1948 |
|
1949 |
"plot_wp_nucs" |
1950 |
|
1951 |
Plot (or not) cluster of nucs |
1952 |
|
1953 |
"plot_wp_nuc_model" |
1954 |
|
1955 |
Plot (or not) gaussian model for a cluster of nucs |
1956 |
|
1957 |
"plot_common_nucs" |
1958 |
|
1959 |
Plot (or not) aligned reads. |
1960 |
|
1961 |
"plot_anovas" |
1962 |
|
1963 |
Plot (or not) scatter for each nuc. |
1964 |
|
1965 |
"plot_anova_boxes" |
1966 |
|
1967 |
Plot (or not) boxplot for each nuc. |
1968 |
|
1969 |
"plot_wp_nucs_4_nonmnase" |
1970 |
|
1971 |
Plot (or not) clusters for non inputs samples. |
1972 |
|
1973 |
"plot_chain" |
1974 |
|
1975 |
Plot (or not) clusterised nuceosomes between mnase samples. |
1976 |
|
1977 |
"aggregated_intra_strain_nucs" |
1978 |
|
1979 |
list of aggregated intra strain nucs. If NULL, it will be computed. |
1980 |
|
1981 |
"aligned_inter_strain_nucs" |
1982 |
|
1983 |
list of aligned inter strain nucs. If NULL, it will be computed. |
1984 |
|
1985 |
"height" |
1986 |
|
1987 |
Number of reads in per million read for each sample, graphical |
1988 |
parametre for the y axis. |
1989 |
|
1990 |
"config" |
1991 |
|
1992 |
GLOBAL config variable |
1993 |
|
1994 |
|
1995 |
Author(s) |
1996 |
~~~~~~~~~ |
1997 |
|
1998 |
Florent Chuffart |