Statistiques
| Branche: | Révision :

root / doc / sphinx_doc / build / text / ref.txt @ 9fdbfada

Historique | Voir | Annoter | Télécharger (32,36 ko)

1

    
2
References
3
**********
4

    
5

    
6
Python Reference
7
================
8

    
9
configurator.CSV_SAMPLE_FILE = None
10

    
11
   Path to cvs file that contains sample information.
12

    
13
configurator.BOWTIE_BUILD_BIN = None
14

    
15
   Path for bowtie2 build bin.
16

    
17
configurator.BOWTIE2_BIN = None
18

    
19
   Path for bowtie2 bin.
20

    
21
configurator.SAMTOOLS_BIN = None
22

    
23
   Path for samtools bin.
24

    
25
configurator.BEDTOOLS_BIN = None
26

    
27
   Path for bedtools bin.
28

    
29
configurator.TF_BIN = None
30

    
31
   Path for TemplateFilter bin.
32

    
33
configurator.TF_TEMPLATES_FILE = None
34

    
35
   Path for TemplateFilter templates file.
36

    
37
configurator.ILLUMINA_OUTPUTFILE_PREFIX = None
38

    
39
   Prefix for Illumina fastq output files.
40

    
41
configurator.INDEX_DIR = None
42

    
43
   Path for index dir.
44

    
45
configurator.ALIGN_DIR = None
46

    
47
   Path for align dir.
48

    
49
configurator.LOG_DIR = None
50

    
51
   Path for log dir
52

    
53
configurator.CACHE_DIR = None
54

    
55
   Path for cache dir.
56

    
57
configurator.RESULTS_DIR = None
58

    
59
   Path for results dir
60

    
61
configurator.FASTA_REFERENCE_GENOME_FILES = None
62

    
63
   Dictionary where each fasta reference genomes is indexed by
64
   reference strain that it corresponds.
65

    
66
configurator.AREA_BLACK_LIST = None
67

    
68
   Dictionary where keys are strain and values are black listed of
69
   geneome region.
70

    
71
configurator.FASTA_INDEXES = None
72

    
73
   Dictionary of strain that indexes dictionaries where keys are
74
   chromosome reference from Fastq file and value are its
75
   correspondance for Templatefilter.
76

    
77
configurator.C2C_FILES = None
78

    
79
   Dictionary where each strain combination indexes genome aligment.
80

    
81
configurator.READ_LENGTH = None
82

    
83
   Length of Illumina reads.
84

    
85
configurator.MAPQ_THRES = None
86

    
87
   Aligment quality thresold.
88

    
89
configurator.TF_CORR = None
90

    
91
   TemplateFilter Template correlation threshold.
92

    
93
configurator.TF_MINW = None
94

    
95
   TemplateFilter minimum width of a nucleosome.
96

    
97
configurator.TF_MAXW = None
98

    
99
   TemplateFilter maximum  width of a nucleosome.
100

    
101
configurator.TF_OL = None
102

    
103
   TemplateFilter maximum allowed overlap for two nucleosomes.
104

    
105
libcoverage.create_bowtie_index(strain, strain_fasta_ref, index_dir, bowtie_build_bin)
106

    
107
   Creates bowtie index for a strain *strain*.
108

    
109
   Parameters:
110
      * **strain** -- the strain reference.
111

    
112
      * **strain_fasta_ref** -- fasta reference genome.
113

    
114
      * **index_dir** -- directories where to put bowtie index.
115

    
116
      * **bowtie_build_bin** -- bowtie2 build binary.
117

    
118
libcoverage.align_reads(sample, align_dir, log_dir, index_dir, illumina_outputfile_prefix, bowtie2_bin, samtools_bin, bedtools_bin)
119

    
120
   Aligns reads to reference genomes. It produces .sam files, that are
121
   converted to .bam, that are converted to .bed.
122

    
123
   Parameters:
124
      * **sample** -- a dict that describe a sample.
125

    
126
      * **align_dir** -- directory where aligned reads will be
127
        stored.
128

    
129
      * **log_dir** -- directory where logs will be stored.
130

    
131
      * **illumina_outputfile_prefix** -- prefix of Illumina
132
        sequencer fastq.gz output files.
133

    
134
      * **bowtie2_bin** -- bowtie2 binary.
135

    
136
      * **samtools_bin** -- samtools binary.
137

    
138
      * **bedtools_bin** -- bedtools binary.
139

    
140
      * **index_dir** -- bowtie index directory.
141

    
142
libcoverage.split_fr_4_TF(sample, align_dir, fasta_indexes, area_black_list, read_length, mapq_thres)
143

    
144
   Create TempleFilter input files form bed files. This function
145
   appends in two times. First, it collects reads from bed files and
146
   feeds a datastructure
147

    
148
   Parameters:
149
      * **sample** -- a dict that describe a sample.
150

    
151
      * **align_dir** -- directory where aligned reads will be
152
        stored.
153

    
154
      * **fasta_index** -- the chr reference from the illumina
155
        output file.
156

    
157
      * **area_black_list** -- the description of genome that will
158
        be omit.
159

    
160
      * **read_length** -- Length of Illumina reads.
161

    
162
      * **mapq_thres** -- mapping quality criterion threshold, see
163
        MAPQ in BED/BAM file format.
164

    
165
libcoverage.template_filter(sample, align_dir, log_dir, tf_bin, tf_templates_file, corr, minw, maxw, ol)
166

    
167
   Run TemplateFilter on a specifi sample. It produces .tab file.
168

    
169
   Parameters:
170
      * **sample** -- a dict that describe a sample.
171

    
172
      * **align_dir** -- directory where aligned reads will be
173
        stored.
174

    
175
      * **log_dir** -- directory where logs will be stored.
176

    
177
      * **tf_bin** -- path to the TemplateFilter binary.
178

    
179
      * **tf_templates_file** -- path to the TemplateFilter
180
        templates file.
181

    
182
      * **corr** -- correlation threshold transmits to
183
        TemplateFilter.
184

    
185
      * **minw** -- minimum width of a nuc, transmits to
186
        TemplateFilter.
187

    
188
      * **maxw** -- maximum width of a nuc, transmits to
189
        TemplateFilter.
190

    
191
      * **ol** -- maximum overlaps for 2 nuc, transmits to
192
        TemplateFilter.
193

    
194

    
195
R Reference
196
===========
197

    
198

    
199
Arabic to Roman pair list.
200
--------------------------
201

    
202

    
203
Description
204
~~~~~~~~~~~
205

    
206
Util to convert Arabicto Roman
207

    
208

    
209
Usage
210
~~~~~
211

    
212
   ARAB2ROM()
213

    
214

    
215
Author(s)
216
~~~~~~~~~
217

    
218
Florent Chuffart
219

    
220
R: False Discovery Rate
221

    
222

    
223
False Discovery Rate
224
--------------------
225

    
226

    
227
Description
228
~~~~~~~~~~~
229

    
230
From a vector x of independent p-values, extract the cutoff
231
corresponding to the specified FDR. See Benjamini & Hochberg 1995
232
paper
233

    
234

    
235
Usage
236
~~~~~
237

    
238
   FDR(x, FDR)
239

    
240

    
241
Arguments
242
~~~~~~~~~
243

    
244
"x"
245

    
246
A vector x of independent p-values.
247

    
248
"FDR"
249

    
250
The specified FDR.
251

    
252

    
253
Value
254
~~~~~
255

    
256
Return the the corresponding cutoff.
257

    
258

    
259
Author(s)
260
~~~~~~~~~
261

    
262
Gael Yvert, Florent Chuffart
263

    
264

    
265
Examples
266
~~~~~~~~
267

    
268
   print("example")
269

    
270
R: Roman to Arabic pair list.
271

    
272

    
273
Roman to Arabic pair list.
274
--------------------------
275

    
276

    
277
Description
278
~~~~~~~~~~~
279

    
280
Util to convert Roman to Arabic
281

    
282

    
283
Usage
284
~~~~~
285

    
286
   ROM2ARAB()
287

    
288

    
289
Author(s)
290
~~~~~~~~~
291

    
292
Florent Chuffart
293

    
294
R: Aggregate replicated sample's nucleosomes.
295

    
296

    
297
Aggregate replicated sample's nucleosomes.
298
------------------------------------------
299

    
300

    
301
Description
302
~~~~~~~~~~~
303

    
304
This function aggregates nucleosome for replicated samples. It uses
305
TemplateFilter ouput of each sample as replicate. Each sample owns a
306
set of nucleosomes computed using TemplateFilter and ordered by the
307
position of their center. Adajacent nucleosomes are compared two by
308
two. Comparison is based on a log likelihood ratio score. The issue of
309
comparison is adjacents nucleosomes merge or separation. Finally the
310
function returns a list of clusters and all computed *lod_scores*.
311
Each cluster ows an attribute *wp* for "well positionned". This
312
attribute is set as *TRUE* if the cluster is composed of exactly one
313
nucleosomes of each sample.
314

    
315

    
316
Usage
317
~~~~~
318

    
319
   aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07)
320

    
321

    
322
Arguments
323
~~~~~~~~~
324

    
325
"samples"
326

    
327
A list of samples. Each sample is a list like *sample = list(id=...,
328
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi =
329
list(name=..., begin=..., end=..., chr=..., genome=...)*.
330

    
331
"lod_thres"
332

    
333
Log likelihood ration threshold.
334

    
335
"coord_max"
336

    
337
A too big value to be a coord for a nucleosome lower bound.
338

    
339

    
340
Value
341
~~~~~
342

    
343
Returns a list of clusterized nucleosomes, and all computed lod
344
scores.
345

    
346

    
347
Author(s)
348
~~~~~~~~~
349

    
350
Florent Chuffart
351

    
352

    
353
Examples
354
~~~~~~~~
355

    
356
   # Dealing with a region of interest
357
   roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301))
358
   samples = list()
359
   for (i in 1:3) {
360
       # Create TF output
361
       tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
362
       outputs = dfadd(NULL,tf_nuc)
363
       outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
364
       # Generate corresponding reads
365
       nb_reads = round(runif(1,170,230))
366
       reads = round(rnorm(nb_reads, tf_nuc$center,20))
367
       u_reads = sort(unique(reads))
368
       strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
369
       counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
370
       shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
371
       u_reads = u_reads + shifts
372
       inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),
373
                                "V2" = u_reads,
374
                                                        "V3" = strands,
375
                                                        "V4" = counts), stringsAsFactors=FALSE)
376
       samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
377
   }
378
   print(aggregate_intra_strain_nucs(samples))
379

    
380
R: Aligns nucleosomes between 2 strains.
381

    
382

    
383
Aligns nucleosomes between 2 strains.
384
-------------------------------------
385

    
386

    
387
Description
388
~~~~~~~~~~~
389

    
390
This function aligns nucs between two strains for a given genome
391
region.
392

    
393

    
394
Usage
395
~~~~~
396

    
397
   align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL,
398
       wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100,
399
       config = NULL, ...)
400

    
401

    
402
Arguments
403
~~~~~~~~~
404

    
405
"replicates"
406

    
407
Set of replicates, ideally 3 per strain.
408

    
409
"wp_nucs_strain_ref1"
410

    
411
List of aggregates nucleosome for strain 1. If it's null this list
412
will be computed.
413

    
414
"wp_nucs_strain_ref2"
415

    
416
List of aggregates nucleosome for strain 2. If it's null this list
417
will be computed.
418

    
419
"corr_thres"
420

    
421
Correlation threshold.
422

    
423
"lod_thres"
424

    
425
LOD cut off.
426

    
427
"config"
428

    
429
GLOBAL config variable
430

    
431
"..."
432

    
433
A list of parameters that will be passed to
434
*aggregate_intra_strain_nucs* if needed.
435

    
436

    
437
Value
438
~~~~~
439

    
440
Returns a list of clusterized nucleosomes, and all computed lod
441
scores.
442

    
443

    
444
Author(s)
445
~~~~~~~~~
446

    
447
Florent Chuffart
448

    
449

    
450
Examples
451
~~~~~~~~
452

    
453
       # Define new translate_roi function...
454
       translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) {
455
         return(roi)
456
       }
457
       # Binding it by uncomment follwing lines.
458
       unlockBinding("translate_roi", as.environment("package:nucleominer"))
459
       unlockBinding("translate_roi", getNamespace("nucleominer"))
460
       assign("translate_roi", translate_roi, "package:nucleominer")
461
       assign("translate_roi", translate_roi, getNamespace("nucleominer"))
462
       lockBinding("translate_roi", getNamespace("nucleominer"))
463
       lockBinding("translate_roi", as.environment("package:nucleominer"))
464

    
465
   # Dealing with a region of interest
466
   roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1")
467
   roi2 = translate_roi(roi, roi$strain_ref1)
468
   replicates = list()
469
   for (j in 1:2) {
470
       samples = list()
471
       for (i in 1:3) {
472
           # Create TF output
473
           tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
474
           outputs = dfadd(NULL,tf_nuc)
475
           outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
476
           # Generate corresponding reads
477
           nb_reads = round(runif(1,170,230))
478
           reads = round(rnorm(nb_reads, tf_nuc$center,20))
479
           u_reads = sort(unique(reads))
480
           strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
481
           counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
482
           shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
483
           u_reads = u_reads + shifts
484
           inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),
485
                                    "V2" = u_reads,
486
                                                            "V3" = strands,
487
                                                            "V4" = counts), stringsAsFactors=FALSE)
488
           samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
489
       }
490
       replicates[[length(replicates) + 1]] = samples
491
   }
492
   print(align_inter_strain_nucs(replicates))
493

    
494
R: Launch deseq methods.
495

    
496

    
497
Launch deseq methods.
498
---------------------
499

    
500

    
501
Description
502
~~~~~~~~~~~
503

    
504
This function is based on deseq example. It mormalizes data, fit data
505
to GLM model with and without interaction term and compare the two
506
l;=models.
507

    
508

    
509
Usage
510
~~~~~
511

    
512
   analyse_design(snep_design, reads)
513

    
514

    
515
Arguments
516
~~~~~~~~~
517

    
518
"snep_design"
519

    
520
The design to considere.
521

    
522
"reads"
523

    
524
The data to considere.
525

    
526

    
527
Author(s)
528
~~~~~~~~~
529

    
530
Florent Chuffart
531

    
532
R: Stage replicates data
533

    
534

    
535
Stage replicates data
536
---------------------
537

    
538

    
539
Description
540
~~~~~~~~~~~
541

    
542
This function loads in memory data corresponding to the given
543
experiments.
544

    
545

    
546
Usage
547
~~~~~
548

    
549
   build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE,
550
       all_samples, config = NULL)
551

    
552

    
553
Arguments
554
~~~~~~~~~
555

    
556
"expe"
557

    
558
a list of vector corresponding to vector of replicates.
559

    
560
"roi"
561

    
562
the region that we are interested in.
563

    
564
"only_fetch"
565

    
566
filter or not inputs.
567

    
568
"get_genome"
569

    
570
Load or not corresponding genome.
571

    
572
"all_samples"
573

    
574
Global list of samples.
575

    
576
"config"
577

    
578
GLOBAL config variable.
579

    
580

    
581
Author(s)
582
~~~~~~~~~
583

    
584
Florent Chuffart
585

    
586

    
587
Examples
588
~~~~~~~~
589

    
590
   # library(rjson)
591
   # library(nucleominer)
592
   #
593
   # # Read config file
594
   # json_conf_file = "nucleo_miner_config.json"
595
   # config = fromJSON(paste(readLines(json_conf_file), collapse=""))
596
   # # Read sample file
597
   # all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE)
598
   # # here are the sample ids in a list
599
   # expes = list(c(1))
600
   # # here is the region that we wnt to see the coverage
601
   # cur = list(chr="8", begin=472000, end=474000, strain_ref="BY")
602
   # # it displays the corverage
603
   # replicates = build_replicates(expes, cur, all_samples=all_samples, config=config)
604
   # out = watch_samples(replicates, config$READ_LENGTH,
605
   #       plot_coverage = TRUE,
606
   #       plot_squared_reads = FALSE,
607
   #       plot_ref_genome = FALSE,
608
   #       plot_arrow_raw_reads = FALSE,
609
   #       plot_arrow_nuc_reads = FALSE,
610
   #       plot_gaussian_reads = FALSE,
611
   #       plot_gaussian_unified_reads = FALSE,
612
   #       plot_ellipse_nucs = FALSE,
613
   #       plot_wp_nucs = FALSE,
614
   #       plot_wp_nuc_model = FALSE,
615
   #       plot_common_nucs = FALSE,
616
   #       height = 50)
617

    
618
R: reformat an "apply manipulated" list of regions
619

    
620

    
621
reformat an "apply manipulated" list of regions
622
-----------------------------------------------
623

    
624

    
625
Description
626
~~~~~~~~~~~
627

    
628
Utils to reformat an "apply manipulated" list of regions
629

    
630

    
631
Usage
632
~~~~~
633

    
634
   collapse_regions(regions)
635

    
636

    
637
Arguments
638
~~~~~~~~~
639

    
640
+-----------------+------+
641
+-----------------+------+
642

    
643

    
644
Author(s)
645
~~~~~~~~~
646

    
647
Florent Chuffart
648

    
649
R: Compute Common Uninterrupted Regions (CUR)
650

    
651

    
652
Compute Common Uninterrupted Regions (CUR)
653
------------------------------------------
654

    
655

    
656
Description
657
~~~~~~~~~~~
658

    
659
CURs are regions that can be aligned between the genomes
660

    
661

    
662
Usage
663
~~~~~
664

    
665
   compute_inter_all_strain_curs(diff_allowed = 10, min_cur_width = 200,
666
       config = NULL, plot = FALSE)
667

    
668

    
669
Arguments
670
~~~~~~~~~
671

    
672
"diff_allowed"
673

    
674
the maximum indel width allowe din a CUR
675

    
676
"min_cur_width"
677

    
678
The minimum width of a CUR
679

    
680
"config"
681

    
682
GLOBAL config variable
683

    
684
"plot"
685

    
686
Plot CURs or not
687

    
688

    
689
Author(s)
690
~~~~~~~~~
691

    
692
Florent Chuffart
693

    
694
R: Crop bound of regions according to region of interest bound
695

    
696

    
697
Crop bound of regions according to region of interest bound
698
-----------------------------------------------------------
699

    
700

    
701
Description
702
~~~~~~~~~~~
703

    
704
The fucntion is no more necessary since we remove "big_roi" bug in
705
translate_roi function.
706

    
707

    
708
Usage
709
~~~~~
710

    
711
   crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL)
712

    
713

    
714
Arguments
715
~~~~~~~~~
716

    
717
"tmp_fuzzy_nucs"
718

    
719
the regiuons to be croped.
720

    
721
"roi"
722

    
723
The region of interest.
724

    
725
"strain"
726

    
727
The strain to consider.
728

    
729
"config"
730

    
731
GLOBAL config variable
732

    
733

    
734
Author(s)
735
~~~~~~~~~
736

    
737
Florent Chuffart
738

    
739
R: Adding list to a dataframe.
740

    
741

    
742
Adding list to a dataframe.
743
---------------------------
744

    
745

    
746
Description
747
~~~~~~~~~~~
748

    
749
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*.
750
Return the dataframe *df*.
751

    
752

    
753
Usage
754
~~~~~
755

    
756
   dfadd(df, l)
757

    
758

    
759
Arguments
760
~~~~~~~~~
761

    
762
"df"
763

    
764
A dataframe
765

    
766
"l"
767

    
768
A list
769

    
770

    
771
Value
772
~~~~~
773

    
774
Return the dataframe *df*.
775

    
776

    
777
Author(s)
778
~~~~~~~~~
779

    
780
Florent Chuffart
781

    
782

    
783
Examples
784
~~~~~~~~
785

    
786
   ## Here dataframe is NULL
787
   print(df)
788
   df = NULL
789

    
790
   # Initialize df
791
   df = dfadd(df, list(key1 = "value1", key2 = "value2"))
792
   print(df)
793

    
794
   # Adding elements to df
795
   df = dfadd(df, list(key1 = "value1'", key2 = "value2'"))
796
   print(df)
797

    
798
R: Extract wp nucs from nuc map.
799

    
800

    
801
Extract wp nucs from nuc map.
802
-----------------------------
803

    
804

    
805
Description
806
~~~~~~~~~~~
807

    
808
Function based on common wp nuc index and roi_index.
809

    
810

    
811
Usage
812
~~~~~
813

    
814
   extract_wp(strain_maps, roi_index, strain, tmp_common_nucs)
815

    
816

    
817
Arguments
818
~~~~~~~~~
819

    
820
"strain_maps"
821

    
822
Nuc maps.
823

    
824
"roi_index"
825

    
826
The region of interest index.
827

    
828
"strain"
829

    
830
The strain to consider.
831

    
832
"tmp_common_nucs"
833

    
834
the list of wp nucs.
835

    
836

    
837
Author(s)
838
~~~~~~~~~
839

    
840
Florent Chuffart
841

    
842
R: Prefetch data
843

    
844

    
845
Prefetch data
846
-------------
847

    
848

    
849
Description
850
~~~~~~~~~~~
851

    
852
Fetch and filter inputs and outpouts per region of interest. Organize
853
it per replicates.
854

    
855

    
856
Usage
857
~~~~~
858

    
859
   fetch_mnase_replicates(strain, roi, all_samples, config = NULL,
860
       only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE)
861

    
862

    
863
Arguments
864
~~~~~~~~~
865

    
866
"strain"
867

    
868
The strain we want mnase replicatesList of replicates. Each replicates
869
is a vector of sample ids.
870

    
871
"roi"
872

    
873
Region of interest.
874

    
875
"all_samples"
876

    
877
Global list of samples.
878

    
879
"config"
880

    
881
GLOBAL config variable
882

    
883
"only_fetch"
884

    
885
If TRUE, only fetch and not filtering. It is used tio load sample
886
files into memory before forking.
887

    
888
"get_genome"
889

    
890
If TRUE, load corresponding genome sequence.
891

    
892
"get_ouputs"
893

    
894
If TRUE, get also ouput corresponding TF output files.
895

    
896

    
897
Author(s)
898
~~~~~~~~~
899

    
900
Florent Chuffart
901

    
902
R: Filter TemplateFilter inputs
903

    
904

    
905
Filter TemplateFilter inputs
906
----------------------------
907

    
908

    
909
Description
910
~~~~~~~~~~~
911

    
912
This function filters TemplateFilter inputs according genome area
913
observed properties. It takes into account reads that are at the
914
frontier of this area and the strand of these reads.
915

    
916

    
917
Usage
918
~~~~~
919

    
920
   filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160,
921
       only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE)
922

    
923

    
924
Arguments
925
~~~~~~~~~
926

    
927
"inputs"
928

    
929
TF inputs to be filtered.
930

    
931
"chr"
932

    
933
Chromosome observed, here chr is an integer.
934

    
935
"x_min"
936

    
937
Coordinate of the first bp observed.
938

    
939
"x_max"
940

    
941
Coordinate of the last bp observed.
942

    
943
"nuc_width"
944

    
945
Nucleosome width.
946

    
947
"only_f"
948

    
949
Filter only F reads.
950

    
951
"only_r"
952

    
953
Filter only R reads.
954

    
955
"filter_for_coverage"
956

    
957
Does it filter for plot coverage?
958

    
959

    
960
Value
961
~~~~~
962

    
963
Returns filtred inputs.
964

    
965

    
966
Author(s)
967
~~~~~~~~~
968

    
969
Florent Chuffart
970

    
971
R: Filter TemplateFilter outputs
972

    
973

    
974
Filter TemplateFilter outputs
975
-----------------------------
976

    
977

    
978
Description
979
~~~~~~~~~~~
980

    
981
This function filters TemplateFilter outputs according, not only
982
genome area observerved properties, but also correlation and overlap
983
threshold.
984

    
985

    
986
Usage
987
~~~~~
988

    
989
   filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160,
990
       ol_bp = 59, corr_thres = 0.5)
991

    
992

    
993
Arguments
994
~~~~~~~~~
995

    
996
"tf_outputs"
997

    
998
TemplateFilter outputs.
999

    
1000
"chr"
1001

    
1002
Chromosome observed, here chr is an integer.
1003

    
1004
"x_min"
1005

    
1006
Coordinate of the first bp observed.
1007

    
1008
"x_max"
1009

    
1010
Coordinate of the last bp observed.
1011

    
1012
"nuc_width"
1013

    
1014
Nucleosome width.
1015

    
1016
"ol_bp"
1017

    
1018
Overlap Threshold.
1019

    
1020
"corr_thres"
1021

    
1022
Correlation threshold.
1023

    
1024

    
1025
Value
1026
~~~~~
1027

    
1028
Returns filtered TemplateFilter Outputs
1029

    
1030

    
1031
Author(s)
1032
~~~~~~~~~
1033

    
1034
Florent Chuffart
1035

    
1036
R: to flat aggregate_intra_strain_nucs function output
1037

    
1038

    
1039
to flat aggregate_intra_strain_nucs function output
1040
---------------------------------------------------
1041

    
1042

    
1043
Description
1044
~~~~~~~~~~~
1045

    
1046
This function builds a dataframe of all clusters obtain from
1047
aggregate_intra_strain_nucs function.
1048

    
1049

    
1050
Usage
1051
~~~~~
1052

    
1053
   flat_aggregated_intra_strain_nucs(partial_strain_maps, roi_index)
1054

    
1055

    
1056
Arguments
1057
~~~~~~~~~
1058

    
1059
"partial_strain_maps"
1060

    
1061
the output of aggregate_intra_strain_nucs function
1062

    
1063
"roi_index"
1064

    
1065
the index of the roi involved
1066

    
1067

    
1068
Value
1069
~~~~~
1070

    
1071
Returns a dataframe of all clusters obtain from
1072
aggregate_intra_strain_nucs function.
1073

    
1074

    
1075
Author(s)
1076
~~~~~~~~~
1077

    
1078
Florent Chuffart
1079

    
1080
R: flat reads
1081

    
1082

    
1083
flat reads
1084
----------
1085

    
1086

    
1087
Description
1088
~~~~~~~~~~~
1089

    
1090
Extract reads coordinates from TempleteFilter input sequence
1091

    
1092

    
1093
Usage
1094
~~~~~
1095

    
1096
   flat_reads(reads, nuc_width)
1097

    
1098

    
1099
Arguments
1100
~~~~~~~~~
1101

    
1102
"reads"
1103

    
1104
TemplateFilter input reads
1105

    
1106
"nuc_width"
1107

    
1108
Width used to shift F and R reads.
1109

    
1110

    
1111
Value
1112
~~~~~
1113

    
1114
Returns a list of F reads, R reads and joint/shifted F and R reads.
1115

    
1116

    
1117
Author(s)
1118
~~~~~~~~~
1119

    
1120
Florent Chuffart
1121

    
1122
R: Retrieve Reads
1123

    
1124

    
1125
Retrieve Reads
1126
--------------
1127

    
1128

    
1129
Description
1130
~~~~~~~~~~~
1131

    
1132
Retrieve reads for a given marker, combi, form.
1133

    
1134

    
1135
Usage
1136
~~~~~
1137

    
1138
   get_all_reads(marker, combi, form = "wp", config = NULL)
1139

    
1140

    
1141
Arguments
1142
~~~~~~~~~
1143

    
1144
"marker"
1145

    
1146
The marker to considere.
1147

    
1148
"combi"
1149

    
1150
The starin combination to considere.
1151

    
1152
"form"
1153

    
1154
The nuc form to considere.
1155

    
1156
"config"
1157

    
1158
GLOBAL config variable
1159

    
1160

    
1161
Author(s)
1162
~~~~~~~~~
1163

    
1164
Florent Chuffart
1165

    
1166
R: get comp strand
1167

    
1168

    
1169
get comp strand
1170
---------------
1171

    
1172

    
1173
Description
1174
~~~~~~~~~~~
1175

    
1176
Compute the complementatry strand.
1177

    
1178

    
1179
Usage
1180
~~~~~
1181

    
1182
   get_comp_strand(strand)
1183

    
1184

    
1185
Arguments
1186
~~~~~~~~~
1187

    
1188
"strand"
1189

    
1190
The original strand.
1191

    
1192

    
1193
Value
1194
~~~~~
1195

    
1196
Returns the complementatry strand.
1197

    
1198

    
1199
Author(s)
1200
~~~~~~~~~
1201

    
1202
Florent Chuffart
1203

    
1204
R: Build the design for deseq
1205

    
1206

    
1207
Build the design for deseq
1208
--------------------------
1209

    
1210

    
1211
Description
1212
~~~~~~~~~~~
1213

    
1214
This function build the design according sample properties.
1215

    
1216

    
1217
Usage
1218
~~~~~
1219

    
1220
   get_design(marker, combi, all_samples)
1221

    
1222

    
1223
Arguments
1224
~~~~~~~~~
1225

    
1226
"marker"
1227

    
1228
The marker to considere.
1229

    
1230
"combi"
1231

    
1232
The starin combination to considere.
1233

    
1234
"all_samples"
1235

    
1236
Global list of samples.
1237

    
1238

    
1239
Author(s)
1240
~~~~~~~~~
1241

    
1242
Florent Chuffart
1243

    
1244
R: Compute the fuzzy nucs.
1245

    
1246

    
1247
Compute the fuzzy nucs.
1248
-----------------------
1249

    
1250

    
1251
Description
1252
~~~~~~~~~~~
1253

    
1254
This function aggregate non common wp nucs for each strain and
1255
substract common wp nucs. It does not take care about the size of the
1256
resulting fuzzy regions. It will be take into account in the count
1257
read part og the pipeline.
1258

    
1259

    
1260
Usage
1261
~~~~~
1262

    
1263
   get_fuzzy(combi, roi, roi_index, strain_maps, common_nuc_results,
1264
       config = NULL)
1265

    
1266

    
1267
Arguments
1268
~~~~~~~~~
1269

    
1270
"combi"
1271

    
1272
The strain combination to consider.
1273

    
1274
"roi"
1275

    
1276
The region of interest.
1277

    
1278
"roi_index"
1279

    
1280
The region of interest index.
1281

    
1282
"strain_maps"
1283

    
1284
Nuc maps.
1285

    
1286
"common_nuc_results"
1287

    
1288
Common wp nuc maps
1289

    
1290
"config"
1291

    
1292
GLOBAL config variable
1293

    
1294

    
1295
Author(s)
1296
~~~~~~~~~
1297

    
1298
Florent Chuffart
1299

    
1300
R: Compute the list of SNEPs for a given set of marker, strain...
1301

    
1302

    
1303
Compute the list of SNEPs for a given set of marker, strain combination and nuc form.
1304
-------------------------------------------------------------------------------------
1305

    
1306

    
1307
Description
1308
~~~~~~~~~~~
1309

    
1310
This function uses
1311

    
1312

    
1313
Usage
1314
~~~~~
1315

    
1316
   get_sneps(marker, combi, form, all_samples, config = NULL)
1317

    
1318

    
1319
Arguments
1320
~~~~~~~~~
1321

    
1322
"marker"
1323

    
1324
The marker involved.
1325

    
1326
"combi"
1327

    
1328
The strain combination involved.
1329

    
1330
"form"
1331

    
1332
the nuc form involved.
1333

    
1334
"all_samples"
1335

    
1336
Global list of samples.
1337

    
1338
"config"
1339

    
1340
GLOBAL config variable
1341

    
1342

    
1343
Author(s)
1344
~~~~~~~~~
1345

    
1346
Florent Chuffart
1347

    
1348

    
1349
Examples
1350
~~~~~~~~
1351

    
1352
   marker = "H3K4me1"
1353
   combi = c("BY", "YJM")
1354
   form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy"
1355
   # foo = get_sneps(marker, combi, form)
1356
   # foo = get_sneps("H4K12ac", c("BY", "RM"), "wp")
1357

    
1358
R: Likelihood ratio
1359

    
1360

    
1361
Likelihood ratio
1362
----------------
1363

    
1364

    
1365
Description
1366
~~~~~~~~~~~
1367

    
1368
Compute the likelihood log of two set of value from two models Vs. a
1369
unique model.
1370

    
1371

    
1372
Usage
1373
~~~~~
1374

    
1375
   lod_score_vecs(x, y)
1376

    
1377

    
1378
Arguments
1379
~~~~~~~~~
1380

    
1381
"x"
1382

    
1383
First vector.
1384

    
1385
"y"
1386

    
1387
Second vector.
1388

    
1389

    
1390
Value
1391
~~~~~
1392

    
1393
Returns the likelihood ratio.
1394

    
1395

    
1396
Author(s)
1397
~~~~~~~~~
1398

    
1399
Florent Chuffart
1400

    
1401

    
1402
Examples
1403
~~~~~~~~
1404

    
1405
   # LOD score for 2 set of values
1406
   mean1=5; sd1=2; card2 = 250
1407
   mean2=6; sd2=3; card1 = 200
1408
   x1 = rnorm(card1, mean1, sd1)
1409
   x2 = rnorm(card2, mean2, sd2)
1410
   min = floor(min(c(x1,x2)))
1411
   max = ceiling(max(c(x1,x2)))
1412
   hist(c(x1,x2), xlim=c(min, max), breaks=min:max)
1413
   lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2)
1414
   lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3)
1415
   lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4)
1416
   lod_score_vecs(x1,x2)
1417

    
1418
R: nm
1419

    
1420

    
1421
nm
1422
--
1423

    
1424

    
1425
Description
1426
~~~~~~~~~~~
1427

    
1428
It provides a set of useful functions allowing to perform quantitative
1429
analysis of nucleosomal epigenome.
1430

    
1431

    
1432
Details
1433
~~~~~~~
1434

    
1435
+-----------------+-----------------------------------------------------+
1436
| Package:        | nucleominer                                         |
1437
+-----------------+-----------------------------------------------------+
1438
| Maintainer:     | Florent Chuffart <florent.chuffart@ens-lyon.fr>     |
1439
+-----------------+-----------------------------------------------------+
1440
| Author:         | Florent Chuffart                                    |
1441
+-----------------+-----------------------------------------------------+
1442
| Version:        | 2.3.29                                              |
1443
+-----------------+-----------------------------------------------------+
1444
| License:        | CeCILL                                              |
1445
+-----------------+-----------------------------------------------------+
1446
| Title:          | nm                                                  |
1447
+-----------------+-----------------------------------------------------+
1448
| Depends:        | seqinr, plotrix, DESeq, cachecache                  |
1449
+-----------------+-----------------------------------------------------+
1450

    
1451

    
1452
Author(s)
1453
~~~~~~~~~
1454

    
1455
Florent Chuffart
1456

    
1457
R: Performaing ANOVAs
1458

    
1459

    
1460
Performaing ANOVAs
1461
------------------
1462

    
1463

    
1464
Description
1465
~~~~~~~~~~~
1466

    
1467
Counts reads and Performs ANOVAS for each common nucleosomes involved.
1468

    
1469

    
1470
Usage
1471
~~~~~
1472

    
1473
   perform_anovas(replicates, aligned_inter_strain_nucs, inputs_name = "Mnase_Seq",
1474
       plot_anova_boxes = FALSE)
1475

    
1476

    
1477
Arguments
1478
~~~~~~~~~
1479

    
1480
"replicates"
1481

    
1482
Set of replicates, each replicate is a list of samples (ideally 3).
1483
Each sample is a list like *sample = list(id=..., marker=...,
1484
strain=..., roi=..., inputs=..., outputs=...)* with *roi =
1485
list(name=..., begin=..., end=..., chr=..., genome=...)*. In the
1486
*perform_anovas* contexte, we need 4 replicates (4 * (3 samples)): 2
1487
strains * (1 marker + 1 input (Mnase_Seq)).
1488

    
1489
"aligned_inter_strain_nucs"
1490

    
1491
List of common nucleosomes.
1492

    
1493
"inputs_name"
1494

    
1495
Name of the input.
1496

    
1497
"plot_anova_boxes"
1498

    
1499
Plot (or not) boxplot for each nuc.
1500

    
1501

    
1502
Value
1503
~~~~~
1504

    
1505
Returns ANOVA results and comunted reads.
1506

    
1507

    
1508
Author(s)
1509
~~~~~~~~~
1510

    
1511
Florent Chuffart
1512

    
1513
R: Plot the distribution of reads.
1514

    
1515

    
1516
Plot the distribution of reads.
1517
-------------------------------
1518

    
1519

    
1520
Description
1521
~~~~~~~~~~~
1522

    
1523
This fuxntion use the deseq nomalization feature to compare
1524
qualitatively the distribution.
1525

    
1526

    
1527
Usage
1528
~~~~~
1529

    
1530
   plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE)
1531

    
1532

    
1533
Arguments
1534
~~~~~~~~~
1535

    
1536
"strain"
1537

    
1538
The strain to considere.
1539

    
1540
"marker"
1541

    
1542
The marker to considere.
1543

    
1544
"res"
1545

    
1546
Data
1547

    
1548
"all_samples"
1549

    
1550
Global list of samples.
1551

    
1552
"NEWPLOT"
1553

    
1554
If FALSE the curve will be add to the current plot.
1555

    
1556

    
1557
Author(s)
1558
~~~~~~~~~
1559

    
1560
Florent Chuffart
1561

    
1562
R: Remove wp nucs from common nucs list.
1563

    
1564

    
1565
Remove wp nucs from common nucs list.
1566
-------------------------------------
1567

    
1568

    
1569
Description
1570
~~~~~~~~~~~
1571

    
1572
It is based on common wp nucs index on nucs and region.
1573

    
1574

    
1575
Usage
1576
~~~~~
1577

    
1578
   remove_aligned_wp(strain_maps, roi_index, tmp_common_nucs, strain)
1579

    
1580

    
1581
Arguments
1582
~~~~~~~~~
1583

    
1584
"strain_maps"
1585

    
1586
Nuc maps.
1587

    
1588
"roi_index"
1589

    
1590
The region of interest index.
1591

    
1592
"tmp_common_nucs"
1593

    
1594
the list of wp nucs.
1595

    
1596
"strain"
1597

    
1598
The strain to consider.
1599

    
1600

    
1601
Author(s)
1602
~~~~~~~~~
1603

    
1604
Florent Chuffart
1605

    
1606
R: sign from strand
1607

    
1608

    
1609
sign from strand
1610
----------------
1611

    
1612

    
1613
Description
1614
~~~~~~~~~~~
1615

    
1616
Get the sign of strand
1617

    
1618

    
1619
Usage
1620
~~~~~
1621

    
1622
   sign_from_strand(strands)
1623

    
1624

    
1625
Arguments
1626
~~~~~~~~~
1627

    
1628
+-----------------+------+
1629
+-----------------+------+
1630

    
1631

    
1632
Value
1633
~~~~~
1634

    
1635
If strand in forward then returns 1 else returns -1
1636

    
1637

    
1638
Author(s)
1639
~~~~~~~~~
1640

    
1641
Florent Chuffart
1642

    
1643
R: Substract to a list of regions an other list of regions that...
1644

    
1645

    
1646
Substract to a list of regions an other list of regions that intersect it.
1647
--------------------------------------------------------------------------
1648

    
1649

    
1650
Description
1651
~~~~~~~~~~~
1652

    
1653
This fucntion embed a recursive part. It occurs when a substracted
1654
region split an original region on two.
1655

    
1656

    
1657
Usage
1658
~~~~~
1659

    
1660
   substract_region(region1, region2)
1661

    
1662

    
1663
Arguments
1664
~~~~~~~~~
1665

    
1666
"region1"
1667

    
1668
Original regions.
1669

    
1670
"region2"
1671

    
1672
Regions to substract.
1673

    
1674

    
1675
Author(s)
1676
~~~~~~~~~
1677

    
1678
Florent Chuffart
1679

    
1680
R: Switch a pairlist
1681

    
1682

    
1683
Switch a pairlist
1684
-----------------
1685

    
1686

    
1687
Description
1688
~~~~~~~~~~~
1689

    
1690
Take a pairlist key:value and return the switched pairlist value:key.
1691

    
1692

    
1693
Usage
1694
~~~~~
1695

    
1696
   switch_pairlist(l)
1697

    
1698

    
1699
Arguments
1700
~~~~~~~~~
1701

    
1702
"l"
1703

    
1704
The pairlist to switch.
1705

    
1706

    
1707
Value
1708
~~~~~
1709

    
1710
The switched pairlist.
1711

    
1712

    
1713
Author(s)
1714
~~~~~~~~~
1715

    
1716
Florent Chuffart
1717

    
1718

    
1719
Examples
1720
~~~~~~~~
1721

    
1722
   l = list(key1 = "value1", key2 = "value2")
1723
   print(switch_pairlist(l))
1724

    
1725
R: Translate a list of regions from a strain ref to another.
1726

    
1727

    
1728
Translate a list of regions from a strain ref to another.
1729
---------------------------------------------------------
1730

    
1731

    
1732
Description
1733
~~~~~~~~~~~
1734

    
1735
This function is an eloborated call to translate_roi.
1736

    
1737

    
1738
Usage
1739
~~~~~
1740

    
1741
   translate_regions(regions, combi, roi_index, config = NULL, roi)
1742

    
1743

    
1744
Arguments
1745
~~~~~~~~~
1746

    
1747
"regions"
1748

    
1749
Regions to be translated.
1750

    
1751
"combi"
1752

    
1753
Combination of strains.
1754

    
1755
"roi_index"
1756

    
1757
The region of interest index.
1758

    
1759
"config"
1760

    
1761
GLOBAL config variable
1762

    
1763
"roi"
1764

    
1765
The region of interest.
1766

    
1767

    
1768
Author(s)
1769
~~~~~~~~~
1770

    
1771
Florent Chuffart
1772

    
1773
R: Translate coords of a genome region.
1774

    
1775

    
1776
Translate coords of a genome region.
1777
------------------------------------
1778

    
1779

    
1780
Description
1781
~~~~~~~~~~~
1782

    
1783
This function is used in the examples, usualy you have to define your
1784
own translation function and overwrite this one using *unlockBinding*
1785
features. Please, refer to the example.
1786

    
1787

    
1788
Usage
1789
~~~~~
1790

    
1791
   translate_roi(roi, strain2, config = NULL, big_roi = NULL)
1792

    
1793

    
1794
Arguments
1795
~~~~~~~~~
1796

    
1797
"roi"
1798

    
1799
Original genome region of interest.
1800

    
1801
"strain2"
1802

    
1803
The strain in wich you want the genome region of interest.
1804

    
1805
"config"
1806

    
1807
GLOBAL config variable
1808

    
1809
"big_roi"
1810

    
1811
A largest region than roi use to filter c2c if it is needed.
1812

    
1813

    
1814
Author(s)
1815
~~~~~~~~~
1816

    
1817
Florent Chuffart
1818

    
1819

    
1820
Examples
1821
~~~~~~~~
1822

    
1823
   # Define new translate_roi function...
1824
   translate_roi = function(roi, strain2, config) {
1825
       strain1 = roi$strain_ref
1826
       if (strain1 == strain2) {
1827
           return(roi)
1828
       } else {
1829
         stop("Here is my new translate_roi function...")
1830
       }
1831
   }
1832
   # Binding it by uncomment follwing lines.
1833
   # unlockBinding("translate_roi", as.environment("package:nm"))
1834
   # unlockBinding("translate_roi", getNamespace("nm"))
1835
   # assign("translate_roi", translate_roi, "package:nm")
1836
   # assign("translate_roi", translate_roi, getNamespace("nm"))
1837
   # lockBinding("translate_roi", getNamespace("nm"))
1838
   # lockBinding("translate_roi", as.environment("package:nm"))
1839

    
1840
R: Aggregate regions that intersect themnselves.
1841

    
1842

    
1843
Aggregate regions that intersect themnselves.
1844
---------------------------------------------
1845

    
1846

    
1847
Description
1848
~~~~~~~~~~~
1849

    
1850
This function is based on sort of lower bounds to detect regions that
1851
intersect. We compare lower bound and upper bound of the porevious
1852
item. This function embed a while loop and break break regions list
1853
become stable.
1854

    
1855

    
1856
Usage
1857
~~~~~
1858

    
1859
   union_regions(regions)
1860

    
1861

    
1862
Arguments
1863
~~~~~~~~~
1864

    
1865
"regions"
1866

    
1867
The Regions to be aggregated
1868

    
1869

    
1870
Author(s)
1871
~~~~~~~~~
1872

    
1873
Florent Chuffart
1874

    
1875
R: Watching analysis of samples
1876

    
1877

    
1878
Watching analysis of samples
1879
----------------------------
1880

    
1881

    
1882
Description
1883
~~~~~~~~~~~
1884

    
1885
This function allows to view analysis for a particuler region of the
1886
genome.
1887

    
1888

    
1889
Usage
1890
~~~~~
1891

    
1892
   watch_samples(replicates, read_length, plot_ref_genome = TRUE,
1893
       plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE,
1894
       plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE,
1895
       plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE,
1896
       change_col = TRUE, plot_wp_nucs = TRUE, plot_wp_nuc_model = TRUE,
1897
       plot_common_nucs = TRUE, plot_anovas = FALSE, plot_anova_boxes = FALSE,
1898
       plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, aggregated_intra_strain_nucs = NULL,
1899
       aligned_inter_strain_nucs = NULL, height = 10, config = NULL)
1900

    
1901

    
1902
Arguments
1903
~~~~~~~~~
1904

    
1905
"replicates"
1906

    
1907
replicates under the form...
1908

    
1909
"read_length"
1910

    
1911
length of the reads
1912

    
1913
"plot_ref_genome"
1914

    
1915
Plot (or not) reference genome.
1916

    
1917
"plot_arrow_raw_reads"
1918

    
1919
Plot (or not) arrows for raw reads.
1920

    
1921
"plot_arrow_nuc_reads"
1922

    
1923
Plot (or not) arrows for reads aasiocied to a nucleosome.
1924

    
1925
"plot_squared_reads"
1926

    
1927
Plot (or not) reads in the square fashion.
1928

    
1929
"plot_coverage"
1930

    
1931
Plot (or not) reads in the covergae fashion. fashion.
1932

    
1933
"plot_gaussian_reads"
1934

    
1935
Plot (or not) gaussian model of a F anf R reads.
1936

    
1937
"plot_gaussian_unified_reads"
1938

    
1939
Plot (or not) gaussian model of a nuc.
1940

    
1941
"plot_ellipse_nucs"
1942

    
1943
Plot (or not) ellipse for a nuc.
1944

    
1945
"change_col"
1946

    
1947
Change the color of each nucleosome.
1948

    
1949
"plot_wp_nucs"
1950

    
1951
Plot (or not) cluster of nucs
1952

    
1953
"plot_wp_nuc_model"
1954

    
1955
Plot (or not) gaussian model for a cluster of nucs
1956

    
1957
"plot_common_nucs"
1958

    
1959
Plot (or not) aligned reads.
1960

    
1961
"plot_anovas"
1962

    
1963
Plot (or not) scatter for each nuc.
1964

    
1965
"plot_anova_boxes"
1966

    
1967
Plot (or not) boxplot for each nuc.
1968

    
1969
"plot_wp_nucs_4_nonmnase"
1970

    
1971
Plot (or not) clusters for non inputs samples.
1972

    
1973
"plot_chain"
1974

    
1975
Plot (or not) clusterised nuceosomes between mnase samples.
1976

    
1977
"aggregated_intra_strain_nucs"
1978

    
1979
list of aggregated intra strain nucs. If NULL, it will be computed.
1980

    
1981
"aligned_inter_strain_nucs"
1982

    
1983
list of aligned inter strain nucs. If NULL, it will be computed.
1984

    
1985
"height"
1986

    
1987
Number of reads in per million read for each sample, graphical
1988
parametre for the y axis.
1989

    
1990
"config"
1991

    
1992
GLOBAL config variable
1993

    
1994

    
1995
Author(s)
1996
~~~~~~~~~
1997

    
1998
Florent Chuffart