
NucleoMiner2 Documentation
Release 2.3.54

Florent CHUFFART, Jean-Baptiste VEYRIERAS, Gael YVERT

January 21, 2016

CONTENTS

1 Readme / Documentation for NucleoMiner2 1
1.1 License . 1
1.2 Installation Instructions . 2

2 Tutorial 5
2.1 Experimental Dataset, Working Directory and Configuration File 5
2.2 Preprocessing Illumina Fastq Reads for Each Sample . 6
2.3 Inferring Nucleosome Position and Extracting Read Counts . 8
2.4 Results: Number of SNEPs . 13
2.5 APPENDICE: Generate .c2c Files . 14

3 References 15
3.1 Python Reference . 15
3.2 R Reference . 17

Index 47

i

ii

CHAPTER

ONE

README / DOCUMENTATION FOR NUCLEOMINER2

NucleoMiner2 offers Python API and R package allowing to perform quantitative analysis of epigenetic marks on
individual nucleosomes. It was developed to detect natural Single-Nucleosome Epi-Polymorphisms (SNEP) from
MNase-seq and ChIP-seq data.

1.1 License

Copyright CNRS 2012-2013

• Florent CHUFFART

• Jean-Baptiste VEYRIERAS

• Gael YVERT

This software is a computer program which purpose is to perform quanti- tative analysis of epigenetic marks at single
nucleosome resolution.

This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free
software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated
by CEA, CNRS and INRIA at the following URL “http://www.cecill.info”.

As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license,
users are provided only with a limited warranty and the software’s author, the holder of the economic rights, and the
successive licensors have only limited liability.

This software is provided with absolutely NO WARRANTY. The authors can not be held responsible, even partially,
for any damage, loss, financial loss or any other undesired facts resulting from the use of the software. In this respect,
the user’s attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate,
and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer
knowledge. Users are therefore encouraged to load and test the software’s suitability as regards their requirements in
conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it
in the same conditions as regards security.

The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you
accept its terms.

1

http://www.cecill.info

NucleoMiner2 Documentation, Release 2.3.54

1.2 Installation Instructions

1.2.1 Links

NucleoMiner2 home page and documentation are available here:

• https://forge.cbp.ens-lyon.fr/redmine/projects/nucleominer

The Yvert lab web page is accessible here:

• http://www.ens-lyon.fr/LBMC/gisv/

1.2.2 Installation

The first installation step is to retrieve the source code of NucleoMiner2. You can do this by typing the following
command in a terminal.

git clone http://forge.cbp.ens-lyon.fr/git/nucleominer

Prerequisites

To work properly, NucleoMiner2 needs that the following free software are installed and made available on your
system:

• Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2

• SAMtools http://samtools.sourceforge.net

• bedtools http://code.google.com/p/bedtools/

• TemplateFilter http://compbio.cs.huji.ac.il/NucPosition/TemplateFiltering

It also requires the following R packages to be installed on your system:

• fork

• rjson

• seqinr

• plotrix

• DESeq

These packages can be installed by typing the following command in an R console:

install.packages(c("fork", "rjson", "seqinr", "plotrix"))
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq")

Finally,by typing the git command above, you downloaded specific R packages provided with NucleoMiner2 that you
now need to install:

• cachecache https://forge.cbp.ens-lyon.fr/redmine/projects/cachecache

• bot https://forge.cbp.ens-lyon.fr/redmine/projects/bot

• nucleominer https://forge.cbp.ens-lyon.fr/redmine/projects/nucleominer

To do so, type the following command in your terminal:

2 Chapter 1. Readme / Documentation for NucleoMiner2

https://forge.cbp.ens-lyon.fr/redmine/projects/nucleominer
http://www.ens-lyon.fr/LBMC/gisv/
http://bowtie-bio.sourceforge.net/bowtie2
http://samtools.sourceforge.net
http://code.google.com/p/bedtools/
http://compbio.cs.huji.ac.il/NucPosition/TemplateFiltering
https://forge.cbp.ens-lyon.fr/redmine/projects/cachecache
https://forge.cbp.ens-lyon.fr/redmine/projects/bot
https://forge.cbp.ens-lyon.fr/redmine/projects/nucleominer

NucleoMiner2 Documentation, Release 2.3.54

cd nucleominer
R CMD INSTALL doc/Chuffart_NM2_workdir/deps/bot_0.14.tar.gz\

doc/Chuffart_NM2_workdir/deps/cachecache_0.1.tar.gz\
build/nucleominer_2.3.46.tar.gz

1.2. Installation Instructions 3

NucleoMiner2 Documentation, Release 2.3.54

4 Chapter 1. Readme / Documentation for NucleoMiner2

CHAPTER

TWO

TUTORIAL

This tutorial describes steps allowing to perform quantitative analysis of epigenetic marks on individual nucleosomes.
We assume that files are organised according to a given hierarchy and that all command lines are launched from the
project’s root directory.

This tutorial is divided into two main parts. The first part covers the python script wf.py that aligns and converts short
sequence reads. The second part covers the R scripts that extracts nucleosome-level information (nucleosome position
and indicators) from the dataset.

2.1 Experimental Dataset, Working Directory and Configuration File

2.1.1 Working Directory Organisation

After having installed NucleoMiner2 environment (Previous section), go to the root working directory of the tutorial
by typing the following command in a terminal:

cd doc/Chuffart_NM2_workdir/

2.1.2 Retrieving Experimental Dataset

The MNase-seq and MN-ChIP-seq raw data are available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under
accession number E-MTAB-2671.

$$$ TODO explain how organise Experimental Dataset into the data directory of the working directory.

In this tutorial, we want to compare nucleosomes of 2 yeast strains: BY and RM. For each strain Mnase-Seq was
performed as well as ChIP-Seq using an antibody recognizing the H3K14ac epigenetic mark. Illumina sequencing
was done in single-read of 50 bp long.

The dataset is composed of 55 files organised as follows:

• 3 replicates for BY MNase Seq

– sample 1 (5 fastq.gz files)

– sample 2 (5 fastq.gz files)

– sample 3 (4 fastq.gz files)

• 3 replicates for RM MNase Seq

– sample 4 (4 fastq.gz files)

– sample 5 (4 fastq.gz files)

5

http://www.ebi.ac.uk/arrayexpress/

NucleoMiner2 Documentation, Release 2.3.54

– sample 6 (5 fastq.gz files)

• 3 replicates for BY ChIP Seq H3K14ac

– sample 36 (5 fastq.gz files)

– sample 37 (5 fastq.gz files)

– sample 53 (9 fastq.gz files)

• 2 replicates for RM ChIP Seq H3K14ac

– sample 38 (5 fastq.gz files)

– sample 39 (4 fastq.gz files)

2.1.3 Python and R Common Configuration File

First, we need to define useful configuration variables that will be passed to python and R scripts. These variables are
contained in file configurator.py. The execution of this python script dumps variables into the nucleominer_config.json
file that will then be used by both R and python scripts.

The initialization of this variables is done in the configurator.py file. If you need to adapt variable values (path, default
parameters...) you need to edit this file. Then, go to the root directory of your project and run the following command
to dump the configuration file:

python src/current/configurator.py

2.2 Preprocessing Illumina Fastq Reads for Each Sample

Once variables and design have been specified, the script wf.py will automatically run all the analysis. You don’t need
to do anything. To run the full analysis, run the following command:

python src/current/wf.py

The details of the steps performed by this script are explained below. This preprocessing consists of 4 steps embedded
in the wf.py script. They are described bellow. As a preamble, this script computes samples, samples_mnase and
strains that will be used along the 4 steps.

wf.samples = []
List of samples where a sample is identified by an id (key: id) and a strain name (key strain).

wf.samples_mnase = []
List of Mnase samples.

wf.strains = []
List of reference strains.

2.2.1 Creating Bowtie Index from each Reference Genome

For each strain, the script wf.py then creates bowtie index. Bowtie index of a strain is a tree view of the genome of this
strain. It will be used by bowtie to align reads. The part of the script performing this is the following:

for strain in strains:
per_strain_stats[strain] = create_bowtie_index(strain,

config["FASTA_REFERENCE_GENOME_FILES"][strain], config["INDEX_DIR"],
config["BOWTIE_BUILD_BIN"])

6 Chapter 2. Tutorial

NucleoMiner2 Documentation, Release 2.3.54

As an indication, the following table summarizes the file sizes and process durations that we experienced when running
this step on a Linux server***.

strain fasta genome file size bowtie index file size process duration
BY 12 Mo 25 Mo 11 s.
RM 12 Mo 24 Mo 9 s.

2.2.2 Aligning Reads to Reference Genome

Next, the wf.py script launches bowtie to align reads to the reference genome. It produces a .sam file that is converted
into a .bed file. Binaries for bowtie, samtools and bedtools are wrapped using python subprocess class. This step is
performed by the following part of the script:

for sample in samples:
per_sample_align_stats["sample_%s" % sample["id"]] = align_reads(sample,

config["ALIGN_DIR"], config["LOG_DIR"], config["INDEX_DIR"],
config["ILLUMINA_OUTPUTFILE_PREFIX"], config["BOWTIE2_BIN"],
config["SAMTOOLS_BIN"], config["BEDTOOLS_BIN"])

2.2.3 Convert Aligned Reads into TemplateFilter Format

TemplateFilter uses particular input formats for reads, so it is necessary to convert the .bed files. TemplateFilter expect
reads in the following format: chr, coord, strand and #read where:

• chr is the number of the chromosome;

• coord is the coordinate of the reads;

• strand is F for forward and R for reverse;

• #reads the number of reads covering this position.

Each entry is tab-separated.

WARNING for reverse strands, bowtie returns the position of the first nucleotide on the left hand side, whereas
TemplateFilter expects the first one on the right hand side. This is taken into account in NucleoMiner2 by adding the
read length (in our case 50) to the reverse reads coordinates.

This step is performed by the following part of the wf.py script:

for sample in samples:
per_sample_convert_stats["sample_%s" % sample["id"]] = split_fr_4_TF(sample,
config["ALIGN_DIR"], config["FASTA_INDEXES"], config["AREA_BLACK_LIST"],
config["READ_LENGTH"],config["MAPQ_THRES"])

The following table summarizes the number of reads, the involved file sizes and process durations that we experienced
when running the two last steps. In our case, alignment process were multithreaded over 3 cores.

2.2. Preprocessing Illumina Fastq Reads for Each Sample 7

NucleoMiner2 Documentation, Release 2.3.54

id Illumina
reads

aligned and filtred
reads

ratio .bed file
size

TF input file
size

process
duration

1 16436138 10199695 62,06% 1064 Mo 60 Mo 383 s.
2 16911132 12512727 73,99% 1298 Mo 64 Mo 437 s.
3 15946902 12340426 77,38% 1280 Mo 65 Mo 423 s.
4 13765584 10381903 75,42% 931 Mo 59 Mo 352 s.
5 15168268 11502855 75,83% 1031 Mo 64 Mo 386 s.
6 18850820 14024905 74,40% 1254 Mo 69 Mo 482 s.
36 17715118 14092985 79,55% 1404 Mo 68 Mo 483 s.
37 17288466 7402082 42,82% 741 Mo 48 Mo 339 s.
38 16116394 13178457 81,77% 1101 Mo 63 Mo 420 s.
39 14241106 10537228 73,99% 880 Mo 57 Mo 348 s.
53 40876476 33780065 82,64% 3316 Mo 103 Mo 1165 s.

2.2.4 Run TemplateFilter on Mnase Samples

Finally, for each sample we perform TemplateFilter analysis.

WARNING TemplateFilter returns a list of nucleosomes. Each nucleosome is defined by its center and its width. An
odd width leads us to consider non- integer lower and upper bound.

WARNING TemplateFilter was not designed to handle replicates. So we recommend to keep a maximum of nucleo-
somes and filter the aberrant ones afterwards using the benefits of having replicates. To do this, we set a low correlation
threshold parameter (0.5) and a particularly high value of overlap (300%).

This step is performed by the following part of the wf.py script:

for sample in samples_mnase:
per_mnase_sample_stats["sample_%s" % sample["id"]] = template_filter(sample,

config["ALIGN_DIR"], config["LOG_DIR"], config["TF_BIN"],
config["TF_TEMPLATES_FILE"], config["TF_CORR"], config["TF_MINW"],
config["TF_MAXW"], config["TF_OL"])

id strain found nucs nuc file size process duration
1 BY 96214 68 Mo 1022 s.
2 BY 91694 65 Mo 1038 s.
3 BY 91205 65 Mo 1036 s.
4 RM 88076 62 Mo 984 s.
5 RM 90141 64 Mo 967 s.
6 RM 87517 62 Mo 980 s.

2.3 Inferring Nucleosome Position and Extracting Read Counts

The second part of the tutorial uses R (http://http://www.r-project.org). NucleoMiner2 contains a set of R scripts that
will be sourced in R from a console launched at the root of your project. These scripts are:

• headers.R

• extract_maps.R

• translate_common_wp.R

• split_samples.R

• count_reads.R

• get_size_factors

8 Chapter 2. Tutorial

http://http://www.r-project.org

NucleoMiner2 Documentation, Release 2.3.54

• launch_deseq.R

2.3.1 The Script headers.R

The script headers.R is included in all other R scripts. It is in charge of:

• launching libraries used in the scripts

• launching configuration (design, strain, marker...)

• computing and caching Common Uinterrupted Regions (CURs). Caching means storing the information in the
computer’s memory.

Note that you can customize the function “translate”. This function allows you to use the alignments between genomes
when performing various tasks.

• You may want to analyze data of a single strain (e.g. treatment/control, or only few mutations). In this case, the
genome is identical across all samples and you do not need to define particular CURs (CURs are chromosomes).
Simply use the default translate function which is neutral.

• If you are analyzing data from two or more strains (as NucleoMiner2 was designed for), then you need to
translate coordinates of one genome into the coordinates of another one. You must do this by aligning the two
genomes, which will produce a .c2c file (see Appendice “Generate .c2c Files”). thenuse it to produce the list of
regions and customise “translate”.

In our tutorial, we are in the second case and to perform all these steps run the following command line in your R
console:

source("src/current/headers.R")

2.3.2 The Script extract_maps.R

This script is in charge of extracting Maps for well-positioned and sensitive nucleosomes. First of all, this script
computes intra and inter-strain matches of nucleosome maps for each CUR. This step can be executed in parallel
on many cores using the BoT library. Next, it collects results and produces maps of well-positioned nucleosomes,
sensitive nucleosomes and Unaligned Nucleosomal Regions .

The map of well-positioned nucleosomes for BY is collected in the result directory and is called BY_wp.tab. It is
composed of following columns:

• chr, the number of the chromosome

• lower_bound, the lower bound of the nucleosome

• upper_bound, the upper bound of the nucleosome

• cur_index, index of the CUR

• index_nuc, the index of the nucleosome in the CUR

• wp, 1 if it is a well positioned nucleosome, 0 otherwise

• nb_reads, the number of reads that support this nucleosome

• nb_nucs, the number of TemplateFilter nucleosome across replicates (= the number of replicates in which it is a
well-positioned nucleosome)

• llr_1, for a well-positioned nucleosome, it is the LLR1 (log-likelihood ratio) between the first and the second
TemplateFilter nucleosome on the chain.

2.3. Inferring Nucleosome Position and Extracting Read Counts 9

NucleoMiner2 Documentation, Release 2.3.54

• llr_2, for a well-positioned nucleosome, it is the LLR1 between the second and the third TemplateFilter nucleo-
some on the chain.

• wp_llr, for a well-positioned nucleosome, it is the LLR2 that compares consistency of the positioning over all
TemplateFilter nucleosomes.

• wp_pval, for a well-positioned nucleosome, it is the p-value chi square test obtained from LLR2 (1-
pchisq(2.LLR2, df=4))

• dyad_shift, for a well-positioned nucleosome, it is the shift between the two extreme TemplateFilter nucleosome
dyad positions.

The sensitive map for BY is collected in the result directory and is called BY_fuzzy.tab. It is composed of following
columns:

• chr, the number of the chromosome

• lower_bound, the lower bound of the nucleosome

• upper_bound, the upper bound of the nucleosome

• cur_index, index of the CUR

The map of common well-positioned nucleosomes aligned between the BY and RM strains is collected in the result
directory and is called BY_RM_common_wp.tab. It is composed of following columns:

• cur_index, the index of the CUR

• index_nuc_BY, the index of the BY nucleosome in the CUR

• index_nuc_RM, the index of the RM nucleosome in the CUR

• llr_score, , the LLR3 score that estimates conservation between the positions in BY and RM

• common_wp_pval, the p-value chi square test obtained from LLR3 (1-pchisq(2.LLR3, df=2))

• diff, the dyads shift between the positions in the two strains (in bp)

The common UNR map for BY and RM strains is collected in the result directory and is called
BY_RM_common_unr.tab. It is composed of the following columns:

• cur_index, the index of the CUR

• index_nuc_BY, the index of the BY nucleosome in the CUR

• index_nuc_RM,the index of the RM nucleosome in the CUR

To execute this script, run the following command in your R console:

source("src/current/extract_maps.R")

2.3.3 The Script translate_common_wp.R

This script is used to translate common well-positioned nucleosome positions from a strain to another strain and stores
it into a table.

For example, the file results/2014-04/RM_wp_tr_2_BY.tab contains RM well-positioned nucleosomes translated into
the BY genome coordinates. It is composed of following columns:

• strain_ref, the reference genome (in which positioned are defined)

• begin, the translated lower bound of the nucleosome

• end, the translated upper bound of the nucleosome

• chr, the number of chromosomes for the reference genome (in which positioned are defined)

10 Chapter 2. Tutorial

NucleoMiner2 Documentation, Release 2.3.54

• length, the length of the nucleosome (could be negative)

• cur_index, the index of the CUR

• index_nuc, the index of the nucleosome in the CUR

To execute this script, run the following command in your R console:

source("src/current/translate_common_wp.R")

2.3.4 The Script split_samples.R

To optimize memory space usage, we split and compress TemplateFilter input files according to their corresponding
chromosome. for example, sample_1_TF.tab will be split into :

• sample_1_chr_1_splited_sample.tab.gz

• sample_1_chr_2_splited_sample.tab.gz

• ...

• sample_1_chr_17_splited_sample.tab.gz

To execute this script, run the following command in your R console:

source("src/current/split_samples.R")

2.3.5 The Script count_reads.R

To associate a number of observations (read) to each nucleosome we run the script count_reads.R.
It produces the files BY_RM_H3K14ac_wp_and_nbreads.tab, BY_RM_H3K14ac_unr_and_nbreads.tab
BY_RM_Mnase_Seq_wp_and_nbreads.tab and BY_RM_Mnase_Seq_unr_and_nbreads.tab for H3K14ac com-
mon well-positioned nucleosomes, H3K14ac UNRs, Mnase common well-positioned nucleosomes and Mnase UNRs
respectively.

For example, the file BY_RM_H3K14ac_unr_and_nbreads.tab contains counted reads for well-positioned nucleo-
somes with the experimental condition ChIP H3K14ac. It is composed of the following columns:

• chr_BY, the number of the chromosome for BY

• lower_bound_BY, the lower bound of the nucleosome for BY

• upper_bound_BY, the upper bound of the nucleosome for BY

• index_nuc_BY, the index of the BY nucleosome in the CUR for BY

• chr_RM, the number of the chromosome for RM

• lower_bound_RM, the lower bound of the nucleosome for RM

• upper_bound_RM, the upper bound of the nucleosome for RM

• index_nuc_RM,the index of the RM nucleosome in the CUR for RM

• cur_index, index of the CUR

• BY_H3K14ac_36, the number of reads for the current nucleosome for the sample 36

• BY_H3K14ac_37, #reads for sample 37

• BY_H3K14ac_53, #reads for sample 53

• RM_H3K14ac_38, #reads for sample 38

2.3. Inferring Nucleosome Position and Extracting Read Counts 11

NucleoMiner2 Documentation, Release 2.3.54

• RM_H3K14ac_39, #reads for sample 39

To execute this script, run the following command in your R console:

source("src/current/count_reads.R")

2.3.6 The Script get_size_factors.R

This script uses the DESeq function estimateSizeFactors to compute the size factor of each sample. It corresponds
to normalisation of read counts from sample to sample, as determined by DESeq. When a sample has n reads for
a nucleosome or a UNR, the normalised count is n/f where f is the factor contained in this file. The script dumps
computed size factors into the file size_factors.tab. This file has the form:

sample_id wp unr wpunr
1 0.87396 0.88097 0.87584
2 1.07890 1.07440 1.07760
3 1.06400 1.05890 1.06250
4 0.85782 0.87948 0.86305
5 0.97577 0.96590 0.97307
6 1.19630 1.18120 1.19190
36 0.93318 0.92762 0.93166
37 0.48315 0.48453 0.48350
38 1.11240 1.11210 1.11230
39 0.89897 0.89917 0.89903
53 2.22650 2.22700 2.22660

sample_id are given in file samples.csv

If you don’t know which column to use for normalization, we recommend using wpunr.

Here are the details of the factors produced:

• unr: factor computed from data of UNR regions. These regions are defined for every pairs of aligned genomes
(e.g. BY_RM)

• wp: same, but for well-positioned nucleosomes.

• wpunr: both types of regions.

To execute this script, run the following command in your R console:

source("src/current/get_size_factors.R")

2.3.7 The Script launch_deseq.R

Finally, the script launch_deseq.R perform statistical analysis on each nucleosome using DESeq. It produces files:

• results/current/BY_RM_H3K14ac_wp_snep.tab

• results/current/BY_RM_H3K14ac_unr_snep.tab

• results/current/BY_RM_H3K14ac_wpunr_snep.tab

• results/current/BY_RM_H3K14ac_wp_mnase.tab

• results/current/BY_RM_H3K14ac_unr_mnase.tab

• results/current/BY_RM_H3K14ac_wpunr_mnase.tab

These files are organised with the following columns (see file BY_RM_H3K14ac_wp_snep.tab for an example):

12 Chapter 2. Tutorial

NucleoMiner2 Documentation, Release 2.3.54

• chr_BY, the number of the chromosome for BY

• lower_bound_BY, the lower bound of the nucleosome for BY

• upper_bound_BY, the upper bound of the nucleosome for BY

• index_nuc_BY, the index of the BY nucleosome in the CUR for BY

• chr_RM, the number of the chromosome for RM

• lower_bound_RM, the lower bound of the nucleosome for RM

• upper_bound_RM, the upper bound of the nucleosome for RM

• index_nuc_RM,the index of the RM nucleosome in the CUR for RM

• cur_index, index of the CUR

• form

• BY_Mnase_Seq_1, the number of reads for the current nucleosome for the sample 1

Next columns concern indicators for each sample:

• BY_Mnase_Seq_2, #reads for sample 2

• BY_Mnase_Seq_3, #reads for sample 3

• RM_Mnase_Seq_4, #reads for sample 4

• RM_Mnase_Seq_5, #reads for sample 5

• RM_Mnase_Seq_6, #reads for sample 6

• BY_H3K14ac_36, #reads for sample 36

• BY_H3K14ac_37, #reads for sample 37

• BY_H3K14ac_53, #reads for sample 53

• RM_H3K14ac_38, #reads for sample 38

• RM_H3K14ac_39, #reads for sample 39

The 5 last columns concern DESeq analysis:

• manip[a_manip] strain[a_strain] manip[a_strain]:strain[a_strain], the manip (marker) effect, the strain effect and
the snep effect. These are the coefficients of the fitted generalized linear model.

• pvalsGLM, the pvalue resulting from the comparison of the GLM model considering the interaction term
marker:strain to the GLM model that does not consider it. This is the statsitcial significance of the interac-
tion term and therefore the statistical significance of the SNEP.

• snep_index, a boolean set to TRUE if the pvalueGLM value is under the threshold computed with FDR function
with a rate set to 0.0001.

To execute this script, run the following command in your R console:

source("src/current/launch_deseq.R")

2.4 Results: Number of SNEPs

Here are the number of computed SNEPs for each forms.

2.4. Results: Number of SNEPs 13

NucleoMiner2 Documentation, Release 2.3.54

form strains #nucs H3K14ac
wp BY-RM 30464 3549
unr BY-RM 9497 1559
wpunr BY-RM 39961 5240

2.5 APPENDICE: Generate .c2c Files

The .c2c files is a simple table that describes how two genome sequences are aligned. This file can be generated by
using scripts that were developed in NucleoMiner 1.0 (Nagarajan et al. PLoS Genetics 2010) and which we provide in
this release of NucleoMiner2.

To use these scripts on your UNIX/LINUX computer you need first to install MUMmer which is designed to rapidly
align entire genomes, whether in complete or draft form.

2.5.1 Installing MUMmer

Get the last version of MUMmer archive on your computer (MUMmer3.23.tar.gz is provided in the directory deps of
your working directory). Copy it in a dedicated directory. Install it locally into the src folder of you working directory
by typing (working directory):

tar -xvzf MUMmer3.23.tar.gz

cd src
tar xfvz ../deps/MUMmer3.23.tar.gz
cd MUMmer3.23
make check
make install

2.5.2 Installing NucleoMiner 1.0 scripts

Get the nucleominer-1.0.tar.gz archive on your computer (this archive is provided in the directory deps of your working
directory). Install it locally into the src folder of you working directory by typing (working directory):

cd src
tar xfvz ../deps/nucleominer-1.0.tar.gz
cd ..

This creates a directory that contains NucleoMiner 1.0 scripts (src/nucleominer-1.0/scripts).

2.5.3 Generate .c2c Files

To generate .c2c files you need to type the following command in a terminal:

export PATH=$PATH:src/MUMmer3.23:src/nucleominer-1.0/scripts
export PERL5LIB=$PERL5LIB:src/nucleominer-1.0/scripts/
NMgxcomp data/saccharomyces_cerevisiae_BY_S288c_chromosomes.fasta \

data/saccharomyces_cerevisiae_rm11-1a_1_supercontigs.fasta \
data/byxrm 2>NMgxcomp.log

After execution, the directory data will hold the .c2c files.

14 Chapter 2. Tutorial

CHAPTER

THREE

REFERENCES

3.1 Python Reference

configurator.CSV_SAMPLE_FILE = None
Path to csv file that contains sample information.

configurator.BOWTIE_BUILD_BIN = None
Path for bowtie2 build bin.

configurator.BOWTIE2_BIN = None
Path for bowtie2 bin.

configurator.SAMTOOLS_BIN = None
Path for samtools bin.

configurator.BEDTOOLS_BIN = None
Path for bedtools bin.

configurator.TF_BIN = None
Path for TemplateFilter bin.

configurator.TF_TEMPLATES_FILE = None
Path for TemplateFilter templates file.

configurator.ILLUMINA_OUTPUTFILE_PREFIX = None
Prefix for Illumina fastq output files.

configurator.INDEX_DIR = None
Path for index dir.

configurator.ALIGN_DIR = None
Path for align dir.

configurator.LOG_DIR = None
Path for log dir

configurator.CACHE_DIR = None
Path for cache dir.

configurator.RESULTS_DIR = None
Path for results dir

configurator.FASTA_REFERENCE_GENOME_FILES = None
Dictionary where each fasta reference genomes is indexed by reference strain that it corresponds.

configurator.AREA_BLACK_LIST = None
Dictionary where keys are strain and values are black listed of geneome region.

15

NucleoMiner2 Documentation, Release 2.3.54

configurator.FASTA_INDEXES = None
Dictionary of strain that indexes dictionaries where keys are chromosome reference from Fastq file and value
are its correspondance for Templatefilter.

configurator.C2C_FILES = None
Dictionary where each strain combination indexes genome aligment.

configurator.READ_LENGTH = None
Length of Illumina reads.

configurator.MAPQ_THRES = None
Aligment quality thresold.

configurator.TF_CORR = None
TemplateFilter Template correlation threshold.

configurator.TF_MINW = None
TemplateFilter minimum width of a nucleosome.

configurator.TF_MAXW = None
TemplateFilter maximum width of a nucleosome.

configurator.TF_OL = None
TemplateFilter maximum allowed overlap for two nucleosomes.

wf.json_conf_file = ‘src/current/nucleominer_config.json’
Path to the json configuration file.

wf.samples = []
List of samples where a sample is identified by an id (key: id) and a strain name (key strain).

wf.samples_mnase = []
List of Mnase samples.

wf.strains = []
List of reference strains.

libcoverage.create_bowtie_index(strain, strain_fasta_ref, index_dir, bowtie_build_bin)
Creates bowtie index for a strain strain.

Parameters

• strain – the strain reference.

• strain_fasta_ref – fasta reference genome.

• index_dir – directories where to put bowtie index.

• bowtie_build_bin – bowtie2 build binary.

libcoverage.align_reads(sample, align_dir, log_dir, index_dir, illumina_outputfile_prefix,
bowtie2_bin, samtools_bin, bedtools_bin)

Aligns reads to reference genomes. It produces .sam files, that are converted to .bam, that are then converted to
.bed.

Parameters

• sample – a dict that describe a sample.

• align_dir – directory where aligned reads will be stored.

• log_dir – directory where logs will be stored.

• illumina_outputfile_prefix – prefix of Illumina sequencer fastq.gz output files.

• bowtie2_bin – bowtie2 binary.

16 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

• samtools_bin – samtools binary.

• bedtools_bin – bedtools binary.

• index_dir – bowtie index directory.

libcoverage.split_fr_4_TF(sample, align_dir, fasta_indexes, area_black_list, read_length,
mapq_thres)

Create TemplateFilter input files form bed files. This function appends in two times. First, it collects reads from
bed files and feeds a datastructure

Parameters

• sample – a dict that describe a sample.

• align_dir – directory where aligned reads will be stored.

• fasta_index – the chr reference from the illumina output file.

• area_black_list – the description of genome that will be omit.

• read_length – Length of Illumina reads.

• mapq_thres – mapping quality criterion threshold, see MAPQ in BED/BAM file format.

libcoverage.template_filter(sample, align_dir, log_dir, tf_bin, tf_templates_file, corr, minw,
maxw, ol)

Run TemplateFilter on a specific sample. It produces .tab file.

Parameters

• sample – a dict that describe a sample.

• align_dir – directory where aligned reads will be stored.

• log_dir – directory where logs will be stored.

• tf_bin – path to the TemplateFilter binary.

• tf_templates_file – path to the TemplateFilter templates file.

• corr – correlation threshold transmits to TemplateFilter.

• minw – minimum width of a nuc, transmits to TemplateFilter.

• maxw – maximum width of a nuc, transmits to TemplateFilter.

• ol – maximum overlaps for 2 nuc, transmits to TemplateFilter.

3.2 R Reference

3.2.1 Arabic to Roman pair list.

Description

Utility to convert Arabic numbers to Roman numbers

Usage

ARAB2ROM()

3.2. R Reference 17

NucleoMiner2 Documentation, Release 2.3.54

Author(s)

Florent Chuffart

R: False Discovery Rate

3.2.2 False Discovery Rate

Description

From a vector x of independent p-values, extract the cutoff corresponding to the specified FDR. See Benjamini &
Hochberg 1995 paper

Usage

FDR(x, FDR)

Arguments

x

A vector x of independent p-values.

FDR

The specified FDR.

Value

Return the the corresponding cutoff.

Author(s)

Gael Yvert, Florent Chuffart

Examples

print("example")

R: Roman to Arabic pair list.

3.2.3 Roman to Arabic pair list.

Description

Utility to convert Roman numbers into Arabic numbers

18 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Usage

ROM2ARAB()

Author(s)

Florent Chuffart

R: Aggregate replicated sample’s nucleosomes.

3.2.4 Aggregate replicated sample’s nucleosomes.

Description

This function aggregates nucleosomes from replicated samples. It uses TemplateFilter ouput of each sample as repli-
cate. Each sample owns a set of nucleosomes computed using TemplateFilter and ordered by the position of their
center (dyad). A chain of nucleosomes is builts across all replicates. Adjacent nucleosomes of the chain are compared
two by two. Comparison is based on a log likelihood ratio (LLR1). depending on the LLR1 value nucleosomes are
merged (low LLR) or separated (high LLR). Finally the function returns a list of clusters and all computed llr_scores.
Each cluster ows an attribute wp for “well positioned”. This attribute is set to TRUE if the cluster is composed of
exactly one nucleosome of each sample.

Usage

aggregate_intra_strain_nucs(samples, llr_thres = 20,
coord_max = 2e+07)

Arguments

samples

A list of samples. Each sample is a list like sample = list(id=..., marker=..., strain=..., roi=..., inputs=..., outputs=...)
with roi = list(name=..., begin=..., end=..., chr=..., genome=...).

llr_thres

Log likelihood ratio threshold to decide between merging and separating

coord_max

A too big value to be a coord for a nucleosome lower bound.

Value

Returns a list of clusterized nucleosomes, and all computed llr scores.

Author(s)

Florent Chuffart

3.2. R Reference 19

NucleoMiner2 Documentation, Release 2.3.54

Examples

Dealing with a region of interest
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301))
samples = list()
for (i in 1:3) {

Create TF output
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
outputs = dfadd(NULL,tf_nuc)
outputs = filter_tf_outputs(outputs, roichr, roibegin, roi$end)
Generate corresponding reads
nb_reads = round(runif(1,170,230))
reads = round(rnorm(nb_reads, tf_nuc$center,20))
u_reads = sort(unique(reads))
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
u_reads = u_reads + shifts
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),

"V2" = u_reads,
"V3" = strands,
"V4" = counts), stringsAsFactors=FALSE)

samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
}
print(aggregate_intra_strain_nucs(samples))

R: Aligns nucleosomes between 2 strains.

3.2.5 Aligns nucleosomes between 2 strains.

Description

This function aligns nucleosomes between two strains for a given genome region.

Usage

align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL,
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, llr_thres = 100,
config = NULL, ...)

Arguments

replicates

Set of replicates, ideally 3 per strain.

wp_nucs_strain_ref1

List of aggregates nucleosome for strain 1. If it’s NULL this list will be computed.

wp_nucs_strain_ref2

List of aggregates nucleosome for strain 2. If it’s NULL this list will be computed.

corr_thres

Correlation threshold.

20 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

llr_thres

Log likelihood ratio threshold to decide between merging and separating

config

GLOBAL config variable

...

A list of parameters that will be passed to aggregate_intra_strain_nucs if needed.

Value

Returns a list of clusterized nucleosomes, and all computed llr scores.

Author(s)

Florent Chuffart

Examples

Define new translate_cur function...
translate_cur = function(roi, strain2, big_cur=NULL, config=NULL) {

return(roi)
}
Binding it by uncomment follwing lines.
unlockBinding("translate_cur", as.environment("package:nucleominer"))
unlockBinding("translate_cur", getNamespace("nucleominer"))
assign("translate_cur", translate_cur, "package:nucleominer")
assign("translate_cur", translate_cur, getNamespace("nucleominer"))
lockBinding("translate_cur", getNamespace("nucleominer"))
lockBinding("translate_cur", as.environment("package:nucleominer"))

Dealing with a region of interest
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1")
roi2 = translate_cur(roi, roi$strain_ref1)
replicates = list()
for (j in 1:2) {

samples = list()
for (i in 1:3) {

Create TF output
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
outputs = dfadd(NULL,tf_nuc)
outputs = filter_tf_outputs(outputs, roichr, roibegin, roi$end)
Generate corresponding reads
nb_reads = round(runif(1,170,230))
reads = round(rnorm(nb_reads, tf_nuc$center,20))
u_reads = sort(unique(reads))
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
u_reads = u_reads + shifts
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)),

"V2" = u_reads,
"V3" = strands,
"V4" = counts), stringsAsFactors=FALSE)

3.2. R Reference 21

NucleoMiner2 Documentation, Release 2.3.54

samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
}
replicates[[length(replicates) + 1]] = samples

}
print(align_inter_strain_nucs(replicates))

R: Compute the list of SNEPs for a given set of marker, strain...

3.2.6 Compute the list of SNEPs for a given set of marker, strain combination and
nuc form.

Description

This function uses

Usage

analyse_count_table(marker, combi, form, all_samples,
FDR = 1e-04, config = NULL)

Arguments

marker

The marker involved.

combi

The strain combination involved.

form

the nuc form involved.

all_samples

Global list of samples.

FDR

config

GLOBAL config variable

Author(s)

Florent Chuffart

Examples

marker = "H3K4me1"
combi = c("BY", "YJM")
form = "wpunr" # "wp" | "unr" | "wpunr"
foo = analyse_count_table(marker, combi, form)
foo = analyse_count_table("H4K12ac", c("BY", "RM"), "wp")

22 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

R: Build count table for a set of samples.

3.2.7 Build count table for a set of samples.

Description

This function build a count table for a set of sample.

Usage

build_count_table(marker, combi, form, curs, all_samples,
config = NULL)

Arguments

marker

The marker that we want to build the count table.

combi

The combinations of strains that we want to build the count table.

form

The nucleosome that we want to observe: “wp” for sel;l position and “unr” for UNR.

curs

The list of CURs

all_samples

A table that describe all our samples.

config

GLOBAL config variable.

Author(s)

Florent Chuffart

R: Extract maps from TemplateFilter outputs

3.2.8 Extract maps from TemplateFilter outputs

Description

This function extracts from TemplateFilter outputs./ This is from there that aggregate_intra_strain_nucs and
align_inter_strain_nucs fucntions are calles. This fucntion write well positionned, fuzzy and both maps in the con-
fig$RESULTS_DIR directory.

3.2. R Reference 23

NucleoMiner2 Documentation, Release 2.3.54

Usage

build_maps(strains, combis, all_samples, curs, config = NULL)

Arguments

strains

The strains for which we want to extract intra strain information.

combis

The combinations of strains for which we want to extract inter strain information.

all_samples

A table that describe all our samples.

curs

The list of CURs

config

GLOBAL config variable.

Author(s)

Florent Chuffart

R: Stage replicates data

3.2.9 Stage replicates data

Description

This function loads in memory the data corresponding to the given experiments.

Usage

build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE,
all_samples, config = NULL)

Arguments

expe

a list of vectors corresponding to replicates.

roi

the region that we are interested in.

only_fetch

filter or not inputs.

24 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

get_genome

Load or not corresponding genome.

all_samples

Global list of samples.

config

GLOBAL config variable.

Author(s)

Florent Chuffart

Examples

library(rjson)
library(nucleominer)
#
Read config file
json_conf_file = "nucleominer_config.json"
config = fromJSON(paste(readLines(json_conf_file), collapse=""))
Read sample file
all_samples = read.cvs(config$CSV_SAMPLE_FILE, sep=";", header=TRUE, stringsAsFactors=FALSE)
here are the sample ids in a list
expes = list(c(1))
here is the region that we wnt to see the coverage
cur = list(chr="8", begin=472000, end=474000, strain_ref="BY")
it displays the corverage
replicates = build_replicates(expes, cur, all_samples=all_samples, config=config)
out = watch_samples(replicates, config$READ_LENGTH,
plot_coverage = TRUE,
plot_squared_reads = FALSE,
plot_ref_genome = FALSE,
plot_arrow_raw_reads = FALSE,
plot_arrow_nuc_reads = FALSE,
plot_gaussian_reads = FALSE,
plot_gaussian_unified_reads = FALSE,
plot_ellipse_nucs = FALSE,
plot_wp_nucs = FALSE,
plot_wp_nuc_model = FALSE,
plot_common_nucs = FALSE,
height = 50)

R: Extract a sub part of the corresponding c2c file

3.2.10 Extract a sub part of the corresponding c2c file

Description

This fonction allows to access to a specific part of the c2c file.

3.2. R Reference 25

NucleoMiner2 Documentation, Release 2.3.54

Usage

c2c_extraction(strain1, strain2, chr = NULL, lower_bound = NULL,
upper_bound = NULL, config = NULL)

Arguments

strain1

the key strain

strain2

the target strain

chr

if defined, the c2c will be filtered according to the chromosome value

lower_bound

if defined, the c2c will be filtered for part of the genome upper than lower_bound

upper_bound

if defined, the c2c will be filtered for part of the genome lower than upper_bound

config

GLOBAL config variable

Author(s)

Florent Chuffart

R: reformat an “apply manipulated” list of regions

3.2.11 reformat an “apply manipulated” list of regions

Description

Utils to reformat an “apply manipulated” list of regions

Usage

collapse_regions(regions)

Arguments

regions

26 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Author(s)

Florent Chuffart

R: Compute Common Uninterrupted Regions (CUR)

3.2.12 Compute Common Uninterrupted Regions (CUR)

Description

CURs are regions that can be aligned between the genomes

Usage

compute_curs(diff_allowed = 30, min_cur_width = 4000,
combis = list(c("BY", "RM"), c("BY", "YJM"), c("RM",

"YJM")), config = NULL)

Arguments

diff_allowed

the maximum indel width allowe din a CUR

min_cur_width

The minimum width of a CUR

combis

list of strain than will be tested as uninterrupted regions

config

GLOBAL config variable

Author(s)

Florent Chuffart

R: count reads cur

3.2.13 count reads cur

Usage

count_reads_cur(...)

Arguments

...

3.2. R Reference 27

NucleoMiner2 Documentation, Release 2.3.54

Author(s)

Florent Chuffart

R: Crop bound of regions according to region of interest bound

3.2.14 Crop bound of regions according to region of interest bound

Description

The fucntion is no more necessary since we remove “big_cur” bug in translate_cur function.

Usage

crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL)

Arguments

tmp_fuzzy_nucs

the regiuons to be croped.

roi

The region of interest.

strain

The strain to consider.

config

GLOBAL config variable

Author(s)

Florent Chuffart

R: Adding list to a dataframe.

3.2.15 Adding list to a dataframe.

Description

Add a list l to a dataframe df. Create it if df is NULL. Return the dataframe df.

Usage

dfadd(df, l)

28 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Arguments

df

A dataframe

l

A list

Value

Return the dataframe df.

Author(s)

Florent Chuffart

Examples

Here dataframe is NULL
print(df)
df = NULL

Initialize df
df = dfadd(df, list(key1 = "value1", key2 = "value2"))
print(df)

Adding elements to df
df = dfadd(df, list(key1 = "value1'", key2 = "value2'"))
print(df)

R: extract maps

3.2.16 extract maps

Usage

extract_maps(...)

Arguments

...

Author(s)

Florent Chuffart

R: Prefetch data

3.2. R Reference 29

NucleoMiner2 Documentation, Release 2.3.54

3.2.17 Prefetch data

Description

Fetch and filter inputs and outpouts per region of interest. Organize it per replicates.

Usage

fetch_mnase_replicates(strain, roi, all_samples, config = NULL,
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE)

Arguments

strain

The strain we want mnase replicatesList of replicates. Each replicates is a vector of sample ids.

roi

Region of interest.

all_samples

Global list of samples.

config

GLOBAL config variable

only_fetch

If TRUE, only fetch and not filtering. It is used tio load sample files into memory before forking.

get_genome

If TRUE, load corresponding genome sequence.

get_ouputs

If TRUE, get also ouput corresponding TF output files.

Author(s)

Florent Chuffart

R: Filter TemplateFilter inputs

3.2.18 Filter TemplateFilter inputs

Description

This function filters TemplateFilter inputs according genome area observed properties. It takes into account reads that
are at the frontier of this area and the strand of these reads.

30 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Usage

filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160,
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE)

Arguments

inputs

TF inputs to be filtered.

chr

Chromosome observed, here chr is an integer.

x_min

Coordinate of the first bp observed.

x_max

Coordinate of the last bp observed.

nuc_width

Nucleosome width.

only_f

Filter only F reads.

only_r

Filter only R reads.

filter_for_coverage

Does it filter for plot coverage?

Value

Returns filtred inputs.

Author(s)

Florent Chuffart

R: Filter TemplateFilter outputs

3.2.19 Filter TemplateFilter outputs

Description

This function filters TemplateFilter outputs according, not only genome area observerved properties, but also correla-
tion and overlapping threshold.

3.2. R Reference 31

NucleoMiner2 Documentation, Release 2.3.54

Usage

filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160,
ol_bp = 59, corr_thres = 0.5)

Arguments

tf_outputs

TemplateFilter outputs.

chr

Chromosome observed, here chr is an integer.

x_min

Coordinate of the first bp observed.

x_max

Coordinate of the last bp observed.

nuc_width

Nucleosome width.

ol_bp

Overlap Threshold.

corr_thres

Correlation threshold.

Value

Returns filtered TemplateFilter Outputs

Author(s)

Florent Chuffart

R: to flat aggregate_intra_strain_nucs function output

3.2.20 to flat aggregate_intra_strain_nucs function output

Description

This function builds a dataframe of all clusters obtain from aggregate_intra_strain_nucs function.

Usage

flat_aggregated_intra_strain_nucs(partial_strain_maps,
cur_index, nb_tracks = 3)

32 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Arguments

partial_strain_maps

the output of aggregate_intra_strain_nucs function

cur_index

the index of the roi involved

nb_tracks

the number of replicates

Value

Returns a dataframe of all clusters obtain from aggregate_intra_strain_nucs function.

Author(s)

Florent Chuffart

R: flat reads

3.2.21 flat reads

Description

Extract reads coordinates from TempleteFilter input sequence

Usage

flat_reads(reads, nuc_width)

Arguments

reads

TemplateFilter input reads

nuc_width

Width used to shift F and R reads.

Value

Returns a list of F reads, R reads and joint/shifted F and R reads.

Author(s)

Florent Chuffart

R: Retrieve Reads

3.2. R Reference 33

NucleoMiner2 Documentation, Release 2.3.54

3.2.22 Retrieve Reads

Description

Retrieve reads for a given marker, combi, form.

Usage

get_all_reads(marker, combi, form = "wp", config = NULL)

Arguments

marker

The marker to considere.

combi

The starin combination to considere.

form

The nuc form to considere.

config

GLOBAL config variable

Author(s)

Florent Chuffart

R: get comp strand

3.2.23 get comp strand

Description

Compute the complementatry strand.

Usage

get_comp_strand(strand)

Arguments

strand

The original strand.

Value

Returns the complementatry strand.

34 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Author(s)

Florent Chuffart

R: Build the design for DESeq

3.2.24 Build the design for DESeq

Description

This function build the design according sample properties.

Usage

get_design(marker, combi, all_samples)

Arguments

marker

The marker to considere.

combi

The starin combination to considere.

all_samples

Global list of samples.

Author(s)

Florent Chuffart

R: Compute the fuzzy list for a given strain.

3.2.25 Compute the fuzzy list for a given strain.

Description

This function grabs the nucleosomes detxted by template_filter that have been rejected bt aggregate_intra_strain_nucs
as well positions.

Usage

get_intra_strain_fuzzy(wp_map, roi, strain, config = NULL)

3.2. R Reference 35

NucleoMiner2 Documentation, Release 2.3.54

Arguments

wp_map

Well positionned nucleosomes map.

roi

The region of interest.

strain

The strain we want to extracvt the fuzzy map.

config

GLOBAL config variable.

Author(s)

Florent Chuffart

R: Compute the unaligned nucleosomal regions (UNRs).

3.2.26 Compute the unaligned nucleosomal regions (UNRs).

Description

This function aggregate non common wp nucs for each strain and substract common wp nucs. It does not take care
about the size of the resulting UNR. It will be take into account in the count read part og the pipeline.

Usage

get_unrs(combi, roi, cur_index, wp_maps, fuzzy_maps,
common_nuc_results, config = NULL)

Arguments

combi

The strain combination to consider.

roi

The region of interest.

cur_index

The region of interest index.

wp_maps

Well positionned nucleosomes maps.

fuzzy_maps

Fuzzy nucleosomes maps.

common_nuc_results

36 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Common wp nuc maps

config

GLOBAL config variable

Author(s)

Florent Chuffart

R: Returns the intersection of 2 list on regions.

3.2.27 Returns the intersection of 2 list on regions.

Description

This function...

Usage

intersect_region(region1, region2)

Arguments

region1

Original regions.

region2

Regions to intersect.

Author(s)

Florent Chuffart

R: Likelihood ratio

3.2.28 Likelihood ratio

Description

Compute the log likelihood ratio of two or more set of value.

Usage

llr_score_nvecs(xs)

3.2. R Reference 37

NucleoMiner2 Documentation, Release 2.3.54

Arguments

xs

list of vectors.

Value

Returns the log likelihood ratio.

Author(s)

Florent Chuffart

Examples

LLR score for 2 set of values
mean1=5; sd1=2; card2 = 250
mean2=6; sd2=3; card1 = 200
x1 = rnorm(card1, mean1, sd1)
x2 = rnorm(card2, mean2, sd2)
min = floor(min(c(x1,x2)))
max = ceiling(max(c(x1,x2)))
hist(c(x1,x2), xlim=c(min, max), breaks=min:max)
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2)
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3)
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4)
llr_score_nvecs(list(x1,x2))

R: mread fasta

3.2.29 mread fasta

Usage

mread.fasta(...)

Arguments

...

Author(s)

Florent Chuffart

R: mread table

38 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

3.2.30 mread table

Usage

mread.table(...)

Arguments

...

Author(s)

Florent Chuffart

R: Plot the distribution of reads.

3.2.31 Plot the distribution of reads.

Description

This fuxntion use the DESeq nomalization feature to compare qualitatively the distribution.

Usage

plot_dist_samples(strain, marker, res, all_samples,
NEWPLOT = TRUE)

Arguments

strain

The strain to considere.

marker

The marker to considere.

res

Data

all_samples

Global list of samples.

NEWPLOT

If FALSE the curve will be add to the current plot.

Author(s)

Florent Chuffart

R: sign from strand

3.2. R Reference 39

NucleoMiner2 Documentation, Release 2.3.54

3.2.32 sign from strand

Description

Get the sign of strand

Usage

sign_from_strand(strands)

Arguments

strands

Value

If strand in forward then returns 1 else returns -1

Author(s)

Florent Chuffart

R: Substract to a list of regions an other list of regions that...

3.2.33 Substract to a list of regions an other list of regions that intersect it.

Description

This fucntion embed a recursive part. It occurs when a substracted region split an original region on two.

Usage

substract_region(region1, region2)

Arguments

region1

Original regions.

region2

Regions to substract.

Author(s)

Florent Chuffart

R: Switch a pairlist

40 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

3.2.34 Switch a pairlist

Description

Take a pairlist key:value and return the switched pairlist value:key.

Usage

switch_pairlist(l)

Arguments

l

The pairlist to switch.

Value

The switched pairlist.

Author(s)

Florent Chuffart

Examples

l = list(key1 = "value1", key2 = "value2")
print(switch_pairlist(l))

R: Translate coords of a genome region.

3.2.35 Translate coords of a genome region.

Description

This function is used in the examples, usualy you have to define your own translation function and overwrite this one
using unlockBinding features. Please, refer to the example.

Usage

translate_cur(roi, strain2, config = NULL, big_cur = NULL)

3.2. R Reference 41

NucleoMiner2 Documentation, Release 2.3.54

Arguments

roi

Original genome region of interest.

strain2

The strain in wich you want the genome region of interest.

config

GLOBAL config variable

big_cur

A largest region than roi use to filter c2c if it is needed.

Author(s)

Florent Chuffart

Examples

Define new translate_cur function...
translate_cur = function(roi, strain2, config) {

strain1 = roi$strain_ref
if (strain1 == strain2) {

return(roi)
} else {

stop("Here is my new translate_cur function...")
}

}
Binding it by uncomment follwing lines.
unlockBinding("translate_cur", as.environment("package:nm"))
unlockBinding("translate_cur", getNamespace("nm"))
assign("translate_cur", translate_cur, "package:nm")
assign("translate_cur", translate_cur, getNamespace("nm"))
lockBinding("translate_cur", getNamespace("nm"))
lockBinding("translate_cur", as.environment("package:nm"))

R: Translate a list of regions from a strain ref to another.

3.2.36 Translate a list of regions from a strain ref to another.

Description

This function is an elaborated call to translate_cur.

Usage

translate_regions(regions, combi, cur_index, config = NULL,
roi)

42 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

Arguments

regions

Regions to be translated.

combi

Combination of strains.

cur_index

The region of interest index.

config

GLOBAL config variable

roi

The region of interest.

Author(s)

Florent Chuffart

R: Aggregate regions that intersect themselves.

3.2.37 Aggregate regions that intersect themselves.

Description

This function is based on sort of lower bounds to detect regions that intersect. We compare lower bound and upper
bound of the porevious item. This function embed a while loop and break break regions list become stable.

Usage

union_regions(regions)

Arguments

regions

The Regions to be aggregated

Author(s)

Florent Chuffart

R: Watching analysis of samples

3.2. R Reference 43

NucleoMiner2 Documentation, Release 2.3.54

3.2.38 Watching analysis of samples

Description

This function allows to view analysis for a particuler region of the genome.

Usage

watch_samples(replicates, read_length, plot_ref_genome = TRUE,
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE,
plot_squared_reads = TRUE, plot_coverage = FALSE,
plot_gaussian_reads = TRUE, plot_gaussian_unified_reads = TRUE,
plot_ellipse_nucs = TRUE, change_col = TRUE, plot_wp_nucs = TRUE,
plot_fuzzy_nucs = FALSE, plot_wp_nuc_model = TRUE,
plot_common_nucs = FALSE, plot_common_unrs = FALSE,
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE,
plot_sample_id = FALSE, aggregated_intra_strain_nucs = NULL,
aligned_inter_strain_nucs = NULL, height = 10,
main = NULL, xlab = NULL, ylab = "#reads (per million reads)",
config = NULL)

Arguments

replicates

replicates under the form...

read_length

length of the reads

plot_ref_genome

Plot (or not) reference genome.

plot_arrow_raw_reads

Plot (or not) arrows for raw reads.

plot_arrow_nuc_reads

Plot (or not) arrows for reads aasiocied to a nucleosome.

plot_squared_reads

Plot (or not) reads in the square fashion.

plot_coverage

Plot (or not) reads in the covergae fashion. fashion.

plot_gaussian_reads

Plot (or not) gaussian model of a F anf R reads.

plot_gaussian_unified_reads

Plot (or not) gaussian model of a nuc.

plot_ellipse_nucs

Plot (or not) ellipse for a nuc.

44 Chapter 3. References

NucleoMiner2 Documentation, Release 2.3.54

change_col

Change the color of each nucleosome.

plot_wp_nucs

Plot (or not) cluster of nucs

plot_fuzzy_nucs

Plot (or not) cluster of fuzzy

plot_wp_nuc_model

Plot (or not) gaussian model for a cluster of nucs

plot_common_nucs

Plot (or not) aligned reads.

plot_common_unrs

Plot (or not) unaligned nucleosomal refgions (UNRs).

plot_wp_nucs_4_nonmnase

Plot (or not) clusters for non inputs samples.

plot_chain

Plot (or not) clusterised nuceosomes between mnase samples.

plot_sample_id

Plot (or not) the sample id for each sample.

aggregated_intra_strain_nucs

list of aggregated intra strain nucs. If NULL, it will be computed.

aligned_inter_strain_nucs

list of aligned inter strain nucs. If NULL, it will be computed.

height

Number of reads in per million read for each sample, graphical parametre for the y axis.

main

main title of the produced plot

xlab

xlab of the produced plot

ylab

ylab of the produced plot

config

GLOBAL config variable

Author(s)

Florent Chuffart

3.2. R Reference 45

NucleoMiner2 Documentation, Release 2.3.54

46 Chapter 3. References

INDEX

A
ALIGN_DIR (in module configurator), 15
align_reads() (in module libcoverage), 16
AREA_BLACK_LIST (in module configurator), 15

B
BEDTOOLS_BIN (in module configurator), 15
BOWTIE2_BIN (in module configurator), 15
BOWTIE_BUILD_BIN (in module configurator), 15

C
C2C_FILES (in module configurator), 16
CACHE_DIR (in module configurator), 15
create_bowtie_index() (in module libcoverage), 16
CSV_SAMPLE_FILE (in module configurator), 15

F
FASTA_INDEXES (in module configurator), 15
FASTA_REFERENCE_GENOME_FILES (in module

configurator), 15

I
ILLUMINA_OUTPUTFILE_PREFIX (in module config-

urator), 15
INDEX_DIR (in module configurator), 15

J
json_conf_file (in module wf), 16

L
LOG_DIR (in module configurator), 15

M
MAPQ_THRES (in module configurator), 16

R
READ_LENGTH (in module configurator), 16
RESULTS_DIR (in module configurator), 15

S
samples (in module wf), 16

samples_mnase (in module wf), 16
SAMTOOLS_BIN (in module configurator), 15
split_fr_4_TF() (in module libcoverage), 17
strains (in module wf), 16

T
template_filter() (in module libcoverage), 17
TF_BIN (in module configurator), 15
TF_CORR (in module configurator), 16
TF_MAXW (in module configurator), 16
TF_MINW (in module configurator), 16
TF_OL (in module configurator), 16
TF_TEMPLATES_FILE (in module configurator), 15

47

	Readme / Documentation for NucleoMiner2
	License
	Installation Instructions

	Tutorial
	Experimental Dataset, Working Directory and Configuration File
	Preprocessing Illumina Fastq Reads for Each Sample
	Inferring Nucleosome Position and Extracting Read Counts
	Results: Number of SNEPs
	APPENDICE: Generate .c2c Files

	References
	Python Reference
	R Reference

	Index

