Statistiques
| Branche: | Révision :

root / doc / sphinx_doc / tuto.rst @ 780f632a

Historique | Voir | Annoter | Télécharger (25,93 ko)

1 935a568c Florent Chuffart
Tutorial
2 935a568c Florent Chuffart
========
3 935a568c Florent Chuffart
4 3961deb6 Florent Chuffart
This tutorial describes steps allowing to perform quantitative analysis of epigenetic marks on individual nucleosomes. We assume that files are organised according to a given hierarchy and that all command lines are launched from the project’s root directory.
5 935a568c Florent Chuffart
6 3961deb6 Florent Chuffart
This tutorial is divided into two main parts. The first part covers the python script `wf.py` that aligns and converts short sequence reads. The second part covers the R scripts that extracts nucleosome-level information (nucleosome position and indicators) from the dataset.
7 935a568c Florent Chuffart
8 935a568c Florent Chuffart
9 dadb6a4d Florent Chuffart
10 dadb6a4d Florent Chuffart
11 e5603c3f Florent Chuffart
Experimental Dataset, Working Directory and Configuration File 
12 e5603c3f Florent Chuffart
--------------------------------------------------------------
13 dadb6a4d Florent Chuffart
14 e5603c3f Florent Chuffart
Working Directory Organisation
15 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16 dadb6a4d Florent Chuffart
17 3961deb6 Florent Chuffart
After having installed NucleoMiner2 environment (Previous section), go to the root working directory of the tutorial by typing the following command in a terminal:
18 dadb6a4d Florent Chuffart
19 5badc2fd Florent Chuffart
.. code:: bash
20 dadb6a4d Florent Chuffart
21 5badc2fd Florent Chuffart
  cd doc/Chuffart_NM2_workdir/
22 dadb6a4d Florent Chuffart
23 dadb6a4d Florent Chuffart
24 e5603c3f Florent Chuffart
Retrieving Experimental Dataset
25 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
26 935a568c Florent Chuffart
27 e5603c3f Florent Chuffart
The MNase-seq and MN-ChIP-seq raw data are available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-2671.
28 935a568c Florent Chuffart
29 e5603c3f Florent Chuffart
$$$ TODO explain how organise Experimental Dataset into the `data` directory of the working directory.
30 935a568c Florent Chuffart
31 935a568c Florent Chuffart
32 3961deb6 Florent Chuffart
In this tutorial, we want to compare nucleosomes of 2 yeast strains: BY and RM. For each strain Mnase-Seq was performed as well as ChIP-Seq using an antibody recognizing the H3K14ac epigenetic mark. Illumina sequencing was done in single-read of 50 bp long.
33 935a568c Florent Chuffart
34 e5603c3f Florent Chuffart
The dataset is composed of 55 files organised as follows: 
35 935a568c Florent Chuffart
36 e5603c3f Florent Chuffart
  - 3 replicates for BY MNase Seq
37 e5603c3f Florent Chuffart
  
38 e5603c3f Florent Chuffart
    - sample 1 (5 fastq.gz files)
39 e5603c3f Florent Chuffart
    - sample 2 (5 fastq.gz files)
40 e5603c3f Florent Chuffart
    - sample 3 (4 fastq.gz files)
41 e5603c3f Florent Chuffart
    
42 e5603c3f Florent Chuffart
  - 3 replicates for RM MNase Seq
43 e5603c3f Florent Chuffart
  
44 e5603c3f Florent Chuffart
    - sample 4 (4 fastq.gz files)
45 e5603c3f Florent Chuffart
    - sample 5 (4 fastq.gz files)
46 e5603c3f Florent Chuffart
    - sample 6 (5 fastq.gz files)
47 e5603c3f Florent Chuffart
    
48 e5603c3f Florent Chuffart
  - 3 replicates for BY ChIP Seq H3K14ac
49 e5603c3f Florent Chuffart
  
50 e5603c3f Florent Chuffart
    - sample 36 (5 fastq.gz files)
51 e5603c3f Florent Chuffart
    - sample 37 (5 fastq.gz files)
52 e5603c3f Florent Chuffart
    - sample 53 (9 fastq.gz files)
53 e5603c3f Florent Chuffart
    
54 e5603c3f Florent Chuffart
  - 2 replicates for RM ChIP Seq H3K14ac
55 e5603c3f Florent Chuffart
  
56 e5603c3f Florent Chuffart
    - sample 38 (5 fastq.gz files)
57 e5603c3f Florent Chuffart
    - sample 39 (4 fastq.gz files)
58 e5603c3f Florent Chuffart
    
59 935a568c Florent Chuffart
60 935a568c Florent Chuffart
61 935a568c Florent Chuffart
62 e5603c3f Florent Chuffart
Python and R Common Configuration File
63 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
64 935a568c Florent Chuffart
65 3961deb6 Florent Chuffart
First, we need to define useful configuration variables that will be passed to python and R scripts. These variables are contained in file `configurator.py`. The execution of this python script dumps variables into the `nucleominer_config.json` file that will then be used by both R and python scripts.
66 935a568c Florent Chuffart
67 3961deb6 Florent Chuffart
The initialization of this variables is done in the configurator.py file. If you need to adapt variable values (path, default parameters...) you need to edit this file. Then, go to the root directory of your project and run the following command to dump the configuration file:
68 935a568c Florent Chuffart
69 e5603c3f Florent Chuffart
.. code:: bash
70 935a568c Florent Chuffart
71 e5603c3f Florent Chuffart
  python src/current/configurator.py
72 e5603c3f Florent Chuffart
  
73 935a568c Florent Chuffart
74 935a568c Florent Chuffart
75 935a568c Florent Chuffart
76 935a568c Florent Chuffart
77 935a568c Florent Chuffart
Preprocessing Illumina Fastq Reads for Each Sample
78 935a568c Florent Chuffart
--------------------------------------------------
79 935a568c Florent Chuffart
80 3961deb6 Florent Chuffart
Once variables and design have been specified, the script wf.py will automatically run all the analysis. You don't need to do anything. 
81 3961deb6 Florent Chuffart
To run the full analysis, run the following command:
82 3961deb6 Florent Chuffart
83 3961deb6 Florent Chuffart
.. code:: bash
84 3961deb6 Florent Chuffart
85 3961deb6 Florent Chuffart
  python src/current/wf.py
86 3961deb6 Florent Chuffart
87 3961deb6 Florent Chuffart
The details of the steps performed by this script are explained below.
88 3961deb6 Florent Chuffart
This preprocessing consists of 4 steps embedded in the `wf.py` script. They are described bellow.  As a preamble, this script computes `samples`, `samples_mnase` and `strains` that will be used along the 4 steps.
89 e5603c3f Florent Chuffart
90 935a568c Florent Chuffart
91 935a568c Florent Chuffart
.. autodata:: wf.samples
92 935a568c Florent Chuffart
    :noindex: 
93 935a568c Florent Chuffart
94 935a568c Florent Chuffart
.. autodata:: wf.samples_mnase
95 935a568c Florent Chuffart
    :noindex: 
96 935a568c Florent Chuffart
97 935a568c Florent Chuffart
.. autodata:: wf.strains
98 935a568c Florent Chuffart
    :noindex: 
99 935a568c Florent Chuffart
100 935a568c Florent Chuffart
101 935a568c Florent Chuffart
Creating Bowtie Index from each Reference Genome
102 935a568c Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
103 935a568c Florent Chuffart
104 3961deb6 Florent Chuffart
For each strain, the script *wf.py* then creates bowtie index. Bowtie index of a strain is a tree view of the genome of this strain. It will be used by bowtie to align reads. The part of the script performing this is the following:
105 935a568c Florent Chuffart
106 8e9facd8 Florent Chuffart
.. literalinclude:: ../../../snep/src/current/wf.py
107 935a568c Florent Chuffart
   :start-after: # _STARTOF_ step_1
108 935a568c Florent Chuffart
   :end-before: # _ENDOF_ step_1
109 935a568c Florent Chuffart
   :language: python
110 935a568c Florent Chuffart
111 3961deb6 Florent Chuffart
As an indication, the following table summarizes the file sizes and process durations that we experienced when running this step on a Linux server***.
112 935a568c Florent Chuffart
113 935a568c Florent Chuffart
======  ======================  ======================  ================
114 935a568c Florent Chuffart
strain  fasta genome file size  bowtie index file size  process duration
115 935a568c Florent Chuffart
======  ======================  ======================  ================
116 935a568c Florent Chuffart
BY      12 Mo                          25 Mo                    11 s.
117 935a568c Florent Chuffart
RM      12 Mo                          24 Mo                    9 s.
118 935a568c Florent Chuffart
======  ======================  ======================  ================
119 935a568c Florent Chuffart
120 935a568c Florent Chuffart
121 935a568c Florent Chuffart
122 935a568c Florent Chuffart
123 935a568c Florent Chuffart
Aligning Reads to Reference Genome 
124 935a568c Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
125 935a568c Florent Chuffart
126 3961deb6 Florent Chuffart
Next, the *wf.py* script launches bowtie to align reads to the reference genome. It produces a `.sam` file that is converted into a `.bed` file. Binaries for `bowtie`, `samtools` and `bedtools` are wrapped using python `subprocess` class. This step is performed by the following part of the script:
127 935a568c Florent Chuffart
128 8e9facd8 Florent Chuffart
.. literalinclude:: ../../../snep/src/current/wf.py
129 935a568c Florent Chuffart
   :start-after: # _STARTOF_ step_2
130 935a568c Florent Chuffart
   :end-before: # _ENDOF_ step_2
131 935a568c Florent Chuffart
   :language: python
132 935a568c Florent Chuffart
133 e5603c3f Florent Chuffart
Convert Aligned Reads into TemplateFilter Format
134 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
135 e5603c3f Florent Chuffart
136 3961deb6 Florent Chuffart
TemplateFilter uses particular input formats for reads, so it is necessary to convert the `.bed` files. TemplateFilter expect reads in the following format: `chr`, `coord`, `strand` and `#read` where:
137 935a568c Florent Chuffart
138 e5603c3f Florent Chuffart
- `chr` is the number of the chromosome;
139 e5603c3f Florent Chuffart
- `coord` is the coordinate of the reads;
140 e5603c3f Florent Chuffart
- `strand` is `F` for forward and `R` for reverse;
141 e5603c3f Florent Chuffart
- `#reads` the number of reads covering this position.
142 935a568c Florent Chuffart
143 935a568c Florent Chuffart
Each entry is *tab*-separated.
144 935a568c Florent Chuffart
145 3961deb6 Florent Chuffart
**WARNING** for reverse strands, bowtie returns the position of the first nucleotide on the left hand side, whereas TemplateFilter expects the first one on the right hand side.  This is taken into account in NucleoMiner2 by adding the read length (in our case 50) to the reverse reads coordinates.
146 935a568c Florent Chuffart
147 3961deb6 Florent Chuffart
This step is performed by the following part of the *wf.py* script:
148 935a568c Florent Chuffart
149 8e9facd8 Florent Chuffart
.. literalinclude:: ../../../snep/src/current/wf.py
150 935a568c Florent Chuffart
   :start-after: # _STARTOF_ step_3
151 935a568c Florent Chuffart
   :end-before: # _ENDOF_ step_3
152 935a568c Florent Chuffart
   :language: python
153 935a568c Florent Chuffart
154 3961deb6 Florent Chuffart
The following table summarizes the number of reads, the involved file sizes and process durations that we experienced when running the two last steps. In our case, alignment process were multithreaded over 3 cores.
155 935a568c Florent Chuffart
156 935a568c Florent Chuffart
==  ==============  =========================  ======  ================  ==================  ================  
157 935a568c Florent Chuffart
id  Illumina reads  aligned and filtred reads  ratio   `.bed` file size  TF input file size  process duration
158 935a568c Florent Chuffart
==  ==============  =========================  ======  ================  ==================  ================
159 935a568c Florent Chuffart
1   16436138        10199695                   62,06%  1064 Mo           60  Mo              383   s.
160 935a568c Florent Chuffart
2   16911132        12512727                   73,99%  1298 Mo           64  Mo              437   s.
161 935a568c Florent Chuffart
3   15946902        12340426                   77,38%  1280 Mo           65  Mo              423   s.
162 935a568c Florent Chuffart
4   13765584        10381903                   75,42%  931  Mo           59  Mo              352   s.
163 935a568c Florent Chuffart
5   15168268        11502855                   75,83%  1031 Mo           64  Mo              386   s.
164 935a568c Florent Chuffart
6   18850820        14024905                   74,40%  1254 Mo           69  Mo              482   s.
165 935a568c Florent Chuffart
36  17715118        14092985                   79,55%  1404 Mo           68  Mo              483   s.
166 935a568c Florent Chuffart
37  17288466        7402082                    42,82%  741  Mo           48  Mo              339   s.
167 935a568c Florent Chuffart
38  16116394        13178457                   81,77%  1101 Mo           63  Mo              420   s.
168 935a568c Florent Chuffart
39  14241106        10537228                   73,99%  880  Mo           57  Mo              348   s.
169 935a568c Florent Chuffart
53  40876476        33780065                   82,64%  3316 Mo           103 Mo              1165  s.
170 935a568c Florent Chuffart
==  ==============  =========================  ======  ================  ==================  ================  
171 935a568c Florent Chuffart
172 935a568c Florent Chuffart
Run TemplateFilter on Mnase Samples
173 dadb6a4d Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
174 935a568c Florent Chuffart
175 e5603c3f Florent Chuffart
Finally, for each sample we perform TemplateFilter analysis. 
176 935a568c Florent Chuffart
177 935a568c Florent Chuffart
**WARNING** TemplateFilter returns a list of nucleosomes. Each nucleosome is 
178 3961deb6 Florent Chuffart
defined by its center and its width. An odd width leads us to consider non-
179 e5603c3f Florent Chuffart
integer lower and upper bound.
180 935a568c Florent Chuffart
181 3961deb6 Florent Chuffart
**WARNING** TemplateFilter was not designed to handle replicates. So we recommend to keep a maximum of nucleosomes and filter the aberrant ones afterwards using the benefits of having replicates. To do this, we set a low correlation threshold parameter (0.5) and a particularly high value of overlap (300%).
182 935a568c Florent Chuffart
183 e5603c3f Florent Chuffart
This step is performed by the following part of the `wf.py` script:
184 935a568c Florent Chuffart
185 8e9facd8 Florent Chuffart
.. literalinclude:: ../../../snep/src/current/wf.py
186 935a568c Florent Chuffart
   :start-after: # _STARTOF_ step_4
187 935a568c Florent Chuffart
   :end-before: # _ENDOF_ step_4
188 935a568c Florent Chuffart
   :language: python
189 935a568c Florent Chuffart
190 935a568c Florent Chuffart
==  ======  ==========  =============  ================
191 935a568c Florent Chuffart
id  strain  found nucs  nuc file size  process duration
192 935a568c Florent Chuffart
==  ======  ==========  =============  ================
193 935a568c Florent Chuffart
1    BY     96214       68 Mo          1022 s.                     
194 935a568c Florent Chuffart
2    BY     91694       65 Mo          1038 s.                      
195 935a568c Florent Chuffart
3    BY     91205       65 Mo          1036 s.                       
196 935a568c Florent Chuffart
4    RM     88076       62 Mo          984 s.                      
197 935a568c Florent Chuffart
5    RM     90141       64 Mo          967 s.                      
198 935a568c Florent Chuffart
6    RM     87517       62 Mo          980 s.                      
199 935a568c Florent Chuffart
==  ======  ==========  =============  ================
200 935a568c Florent Chuffart
201 935a568c Florent Chuffart
202 935a568c Florent Chuffart
203 935a568c Florent Chuffart
204 935a568c Florent Chuffart
205 935a568c Florent Chuffart
206 935a568c Florent Chuffart
207 935a568c Florent Chuffart
208 935a568c Florent Chuffart
209 935a568c Florent Chuffart
210 935a568c Florent Chuffart
211 935a568c Florent Chuffart
212 935a568c Florent Chuffart
213 e5603c3f Florent Chuffart
214 e5603c3f Florent Chuffart
215 e5603c3f Florent Chuffart
216 e5603c3f Florent Chuffart
217 e5603c3f Florent Chuffart
218 e5603c3f Florent Chuffart
219 e5603c3f Florent Chuffart
220 e5603c3f Florent Chuffart
221 e5603c3f Florent Chuffart
222 e5603c3f Florent Chuffart
223 e5603c3f Florent Chuffart
224 e5603c3f Florent Chuffart
225 e5603c3f Florent Chuffart
226 e5603c3f Florent Chuffart
227 e5603c3f Florent Chuffart
228 e5603c3f Florent Chuffart
229 e5603c3f Florent Chuffart
230 e5603c3f Florent Chuffart
231 e5603c3f Florent Chuffart
232 e5603c3f Florent Chuffart
233 e5603c3f Florent Chuffart
234 e5603c3f Florent Chuffart
235 e5603c3f Florent Chuffart
236 e5603c3f Florent Chuffart
237 e5603c3f Florent Chuffart
238 e5603c3f Florent Chuffart
239 e5603c3f Florent Chuffart
240 e5603c3f Florent Chuffart
241 e5603c3f Florent Chuffart
242 e5603c3f Florent Chuffart
243 e5603c3f Florent Chuffart
244 e5603c3f Florent Chuffart
245 e5603c3f Florent Chuffart
246 e5603c3f Florent Chuffart
247 e5603c3f Florent Chuffart
248 e5603c3f Florent Chuffart
249 e5603c3f Florent Chuffart
250 e5603c3f Florent Chuffart
251 e5603c3f Florent Chuffart
252 e5603c3f Florent Chuffart
253 e5603c3f Florent Chuffart
254 e5603c3f Florent Chuffart
..
255 e5603c3f Florent Chuffart
..
256 e5603c3f Florent Chuffart
.. - libcoverage.py
257 e5603c3f Florent Chuffart
.. - wf.py
258 e5603c3f Florent Chuffart
..
259 e5603c3f Florent Chuffart
..
260 e5603c3f Florent Chuffart
..
261 e5603c3f Florent Chuffart
..
262 e5603c3f Florent Chuffart
..
263 e5603c3f Florent Chuffart
..
264 e5603c3f Florent Chuffart
.. In order to simplify the design of experiment, we consider Mnase as a marker.
265 e5603c3f Florent Chuffart
.. For each couple `(strain, marker)` we perform 3 replicates. So, theoritically
266 e5603c3f Florent Chuffart
.. we should have `3 * (1 + 5) * 3 = 54` samples. In practice we only obtain 2
267 e5603c3f Florent Chuffart
.. replicates for `(YJM, H3K4me1)`. Each one of the 53 samples is indentify by a
268 e5603c3f Florent Chuffart
.. uniq identifier. The file `CSV_SAMPLE_FILE` sums up this information.
269 e5603c3f Florent Chuffart
..
270 e5603c3f Florent Chuffart
.. .. autodata:: configurator.CSV_SAMPLE_FILE
271 e5603c3f Florent Chuffart
..     :noindex:
272 e5603c3f Florent Chuffart
..
273 e5603c3f Florent Chuffart
.. We use a convention to link sample and Illumina fastq outputs. Illumina output
274 e5603c3f Florent Chuffart
.. files of the sample `ID` will be stored in the directory
275 e5603c3f Florent Chuffart
.. `ILLUMINA_OUTPUTFILE_PREFIX` + `ID`. For example, sample 41 outputs will be
276 e5603c3f Florent Chuffart
.. stored in the directory `data/2012-09-05/FASTQ/Sample_Yvert_Bq41/`.
277 e5603c3f Florent Chuffart
..
278 e5603c3f Florent Chuffart
.. .. autodata:: configurator.ILLUMINA_OUTPUTFILE_PREFIX
279 e5603c3f Florent Chuffart
..     :noindex:
280 e5603c3f Florent Chuffart
..
281 e5603c3f Florent Chuffart
.. For BY (resp. RM and YJM) we use following reference genome
282 e5603c3f Florent Chuffart
.. `saccharomyces_cerevisiae_BY_S288c_chromosomes.fasta`
283 e5603c3f Florent Chuffart
.. (resp. `saccharomyces_cerevisiae_rm11-1a_1_supercontigs.fasta` and
284 e5603c3f Florent Chuffart
.. `saccharomyces_cerevisiae_YJM_789_screencontig.fasta`).
285 e5603c3f Florent Chuffart
.. The index `FASTA_REFERENCE_GENOME_FILES` stores this information.
286 e5603c3f Florent Chuffart
..
287 e5603c3f Florent Chuffart
.. .. autodata:: configurator.FASTA_REFERENCE_GENOME_FILES
288 e5603c3f Florent Chuffart
..     :noindex:
289 e5603c3f Florent Chuffart
..
290 e5603c3f Florent Chuffart
.. Each chromosome/contig is identify in the fasta file by an obscure identifier.
291 e5603c3f Florent Chuffart
.. For example, BY chromosome I is identify by `gi|144228165|ref|NC_001133.7|` when
292 e5603c3f Florent Chuffart
.. TemplateFilter is waiting for an integer. So, we translate it. The index
293 e5603c3f Florent Chuffart
.. `FASTA_INDEXES` stores this translation.
294 e5603c3f Florent Chuffart
..
295 e5603c3f Florent Chuffart
.. .. autodata:: configurator.FASTA_INDEXES
296 e5603c3f Florent Chuffart
..     :noindex:
297 e5603c3f Florent Chuffart
..
298 e5603c3f Florent Chuffart
.. From a pragamatical point of view we discard some part of the genome (repeated
299 e5603c3f Florent Chuffart
.. sequence etc...). The list of the black listed area is explicitely detailled in
300 e5603c3f Florent Chuffart
.. `AREA_BLACK_LIST`.
301 e5603c3f Florent Chuffart
..
302 e5603c3f Florent Chuffart
.. .. autodata:: configurator.AREA_BLACK_LIST
303 e5603c3f Florent Chuffart
..     :noindex:
304 e5603c3f Florent Chuffart
..
305 e5603c3f Florent Chuffart
.. For BY-RM (resp. BY-YJM and RM-YJM) genome sequence alignment we use previously
306 e5603c3f Florent Chuffart
.. compute .c2c file `data/2012-03_primarydata/BY_RM_gxcomp.c2c` (resp.
307 e5603c3f Florent Chuffart
.. `BY_YJM_GComp_All.c2c` and `RM_YJM_gxcomp.c2c`). For more information about
308 e5603c3f Florent Chuffart
.. .c2c files, please read section 5 of the manual of `NucleoMiner`, the old
309 e5603c3f Florent Chuffart
.. version of `NucleoMiner2`
310 e5603c3f Florent Chuffart
.. (http://www.ens-lyon.fr/LBMC/gisv/NucleoMiner_Manual/manual.pdf).
311 e5603c3f Florent Chuffart
..
312 e5603c3f Florent Chuffart
.. .. autodata:: configurator.C2C_FILES
313 e5603c3f Florent Chuffart
..     :noindex:
314 e5603c3f Florent Chuffart
..
315 e5603c3f Florent Chuffart
.. `nucleominer` uses specific directory to work in, these are described in
316 e5603c3f Florent Chuffart
.. `INDEX_DIR`, `ALIGN_DIR` and `LOG_DIR`.
317 e5603c3f Florent Chuffart
..
318 e5603c3f Florent Chuffart
.. Finally, `nucleominer` use external ressources, the path to these resspources
319 e5603c3f Florent Chuffart
.. are describe in `BOWTIE_BUILD_BIN`, `BOWTIE2_BIN`, `SAMTOOLS_BIN`,
320 e5603c3f Florent Chuffart
.. `BEDTOOLS_BIN` and `TF_BIN` and `TF_TEMPLATES_FILE`.
321 e5603c3f Florent Chuffart
..
322 e5603c3f Florent Chuffart
.. All paths, prefixes and indexes could be change in the
323 e5603c3f Florent Chuffart
.. `src/current/nucleominer_config.json` file.
324 e5603c3f Florent Chuffart
..
325 e5603c3f Florent Chuffart
.. .. autodata:: wf.json_conf_file
326 e5603c3f Florent Chuffart
..     :noindex:
327 e5603c3f Florent Chuffart
..
328 e5603c3f Florent Chuffart
329 e5603c3f Florent Chuffart
330 e5603c3f Florent Chuffart
331 e5603c3f Florent Chuffart
332 e5603c3f Florent Chuffart
333 e5603c3f Florent Chuffart
334 e5603c3f Florent Chuffart
335 e5603c3f Florent Chuffart
336 e5603c3f Florent Chuffart
337 e5603c3f Florent Chuffart
338 e5603c3f Florent Chuffart
339 e5603c3f Florent Chuffart
340 e5603c3f Florent Chuffart
341 e5603c3f Florent Chuffart
342 e5603c3f Florent Chuffart
343 e5603c3f Florent Chuffart
344 e5603c3f Florent Chuffart
345 e5603c3f Florent Chuffart
346 e5603c3f Florent Chuffart
347 e5603c3f Florent Chuffart
348 e5603c3f Florent Chuffart
349 e5603c3f Florent Chuffart
350 e5603c3f Florent Chuffart
351 e5603c3f Florent Chuffart
352 e5603c3f Florent Chuffart
353 e5603c3f Florent Chuffart
354 e5603c3f Florent Chuffart
355 e5603c3f Florent Chuffart
356 e5603c3f Florent Chuffart
357 e5603c3f Florent Chuffart
358 e5603c3f Florent Chuffart
359 e5603c3f Florent Chuffart
360 e5603c3f Florent Chuffart
361 e5603c3f Florent Chuffart
362 e5603c3f Florent Chuffart
363 e5603c3f Florent Chuffart
364 e5603c3f Florent Chuffart
365 e5603c3f Florent Chuffart
366 e5603c3f Florent Chuffart
367 e5603c3f Florent Chuffart
368 e5603c3f Florent Chuffart
369 e5603c3f Florent Chuffart
370 935a568c Florent Chuffart
Inferring Nucleosome Position and Extracting Read Counts
371 935a568c Florent Chuffart
--------------------------------------------------------
372 935a568c Florent Chuffart
373 935a568c Florent Chuffart
374 935a568c Florent Chuffart
375 3961deb6 Florent Chuffart
The second part of the tutorial uses R (http://http://www.r-project.org). NucleoMiner2 contains a set of R scripts that will be sourced in R from a console launched at the root of your project. These scripts are:
376 935a568c Florent Chuffart
377 dadb6a4d Florent Chuffart
  - headers.R
378 935a568c Florent Chuffart
  - extract_maps.R
379 e5603c3f Florent Chuffart
  - translate_common_wp.R
380 b20637ed Florent Chuffart
  - split_samples.R
381 935a568c Florent Chuffart
  - count_reads.R
382 935a568c Florent Chuffart
  - get_size_factors  
383 935a568c Florent Chuffart
  - launch_deseq.R
384 935a568c Florent Chuffart
385 dadb6a4d Florent Chuffart
The Script headers.R
386 dadb6a4d Florent Chuffart
^^^^^^^^^^^^^^^^^^^^
387 dadb6a4d Florent Chuffart
388 3961deb6 Florent Chuffart
The script headers.R is included in all other R scripts. It is in charge of: 
389 dadb6a4d Florent Chuffart
390 e5603c3f Florent Chuffart
  - launching libraries used in the scripts
391 dadb6a4d Florent Chuffart
  - launching configuration (design, strain, marker...)
392 3961deb6 Florent Chuffart
  - computing and caching Common Uinterrupted Regions (CURs). Caching means storing the information in the computer's memory.
393 e5603c3f Florent Chuffart
394 3961deb6 Florent Chuffart
Note that you can customize the function “translate”. This function allows you to use the alignments between genomes when performing various tasks. 
395 e5603c3f Florent Chuffart
396 3961deb6 Florent Chuffart
  -  You may want to analyze data of a single strain (e.g. treatment/control, or only few mutations). In this case, the genome is identical across all samples and you do not need to define particular CURs (CURs are chromosomes). Simply use the default translate function which is neutral.
397 e5603c3f Florent Chuffart
398 3961deb6 Florent Chuffart
  - If you are analyzing data from two or more strains (as NucleoMiner2 was designed for), then you need to translate coordinates of one genome into the coordinates of another one. You must do this by aligning the two genomes, which will produce a .c2c file (see Appendice "Generate .c2c Files").  thenuse it to produce the list of regions and customise “translate”.
399 e5603c3f Florent Chuffart
400 3961deb6 Florent Chuffart
In our tutorial, we are in the second case and to perform all these steps run the following command line in your R console:
401 935a568c Florent Chuffart
402 935a568c Florent Chuffart
.. code:: bash
403 935a568c Florent Chuffart
404 e5603c3f Florent Chuffart
  source("src/current/headers.R")
405 935a568c Florent Chuffart
406 935a568c Florent Chuffart
407 dadb6a4d Florent Chuffart
The Script extract_maps.R
408 dadb6a4d Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^
409 3961deb6 Florent Chuffart
This script is in charge of extracting Maps for well-positioned and sensitive nucleosomes. First of all, this script computes intra and inter-strain matches of nucleosome maps for each CUR. This step can be executed in parallel on many cores using the BoT library. Next, it collects results and produces maps of  well-positioned nucleosomes, sensitive nucleosomes and Unaligned Nucleosomal Regions .
410 dadb6a4d Florent Chuffart
411 3961deb6 Florent Chuffart
The map of well-positioned nucleosomes for BY is collected in the result directory and is called `BY_wp.tab`. It is composed of following columns:
412 dadb6a4d Florent Chuffart
413 dadb6a4d Florent Chuffart
 - chr, the number of the chromosome 
414 dadb6a4d Florent Chuffart
 - lower_bound, the lower bound of the nucleosome
415 dadb6a4d Florent Chuffart
 - upper_bound, the upper bound of the nucleosome 
416 dadb6a4d Florent Chuffart
 - cur_index, index of the CUR
417 dadb6a4d Florent Chuffart
 - index_nuc, the index of the nucleosome in the CUR
418 e5603c3f Florent Chuffart
 - wp, 1 if it is a well positioned nucleosome, 0 otherwise
419 e5603c3f Florent Chuffart
 - nb_reads, the number of reads that support this nucleosome
420 e5603c3f Florent Chuffart
 - nb_nucs, the number of TemplateFilter nucleosome across replicates (= the number of replicates in which it is a well-positioned nucleosome)
421 e5603c3f Florent Chuffart
 - llr_1, for a well-positioned nucleosome, it is the LLR1 (log-likelihood ratio) between the first and the second TemplateFilter nucleosome on the chain.
422 e5603c3f Florent Chuffart
 - llr_2, for a well-positioned nucleosome, it is the LLR1 between the second and the third TemplateFilter nucleosome on the chain.
423 e5603c3f Florent Chuffart
 - wp_llr, for a well-positioned nucleosome, it is the LLR2 that compares consistency of the positioning over all TemplateFilter nucleosomes.
424 3961deb6 Florent Chuffart
 - wp_pval, for a well-positioned nucleosome, it is the p-value chi square test obtained from LLR2 (`1-pchisq(2.LLR2, df=4)`)
425 e5603c3f Florent Chuffart
 - dyad_shift, for a well-positioned nucleosome, it is the shift between the two extreme TemplateFilter nucleosome dyad positions. 
426 dadb6a4d Florent Chuffart
427 3961deb6 Florent Chuffart
The sensitive map for BY is collected in the result directory and is called `BY_fuzzy.tab`. It is composed of following columns:
428 dadb6a4d Florent Chuffart
429 dadb6a4d Florent Chuffart
 - chr, the number of the chromosome 
430 dadb6a4d Florent Chuffart
 - lower_bound, the lower bound of the nucleosome
431 dadb6a4d Florent Chuffart
 - upper_bound, the upper bound of the nucleosome 
432 dadb6a4d Florent Chuffart
 - cur_index, index of the CUR
433 dadb6a4d Florent Chuffart
434 e5603c3f Florent Chuffart
The map of common well-positioned nucleosomes aligned between the BY and RM strains is collected in the result directory and is called `BY_RM_common_wp.tab`. It is composed of following columns:
435 dadb6a4d Florent Chuffart
436 dadb6a4d Florent Chuffart
 - cur_index, the index of the CUR
437 dadb6a4d Florent Chuffart
 - index_nuc_BY, the index of the BY nucleosome in the CUR
438 e5603c3f Florent Chuffart
 - index_nuc_RM, the index of the RM nucleosome in the CUR
439 e5603c3f Florent Chuffart
 - llr_score, , the LLR3 score that estimates conservation between the positions in BY and RM 
440 e5603c3f Florent Chuffart
 - common_wp_pval,  the p-value chi square test obtained from LLR3 (`1-pchisq(2.LLR3, df=2)`)
441 3961deb6 Florent Chuffart
 - diff, the dyads shift between the positions in the two strains (in bp)
442 dadb6a4d Florent Chuffart
443 e5603c3f Florent Chuffart
The common UNR map for BY and RM strains is collected in the result directory and is called `BY_RM_common_unr.tab`. It is composed of the following columns:
444 dadb6a4d Florent Chuffart
445 dadb6a4d Florent Chuffart
 - cur_index, the index of the CUR
446 dadb6a4d Florent Chuffart
 - index_nuc_BY, the index of the BY nucleosome in the CUR
447 dadb6a4d Florent Chuffart
 - index_nuc_RM,the index of the RM nucleosome in the CUR
448 dadb6a4d Florent Chuffart
449 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
450 935a568c Florent Chuffart
451 935a568c Florent Chuffart
.. code:: bash
452 935a568c Florent Chuffart
453 dadb6a4d Florent Chuffart
  source("src/current/extract_maps.R")
454 dadb6a4d Florent Chuffart
455 dadb6a4d Florent Chuffart
456 e5603c3f Florent Chuffart
The Script translate_common_wp.R
457 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
458 dadb6a4d Florent Chuffart
459 3961deb6 Florent Chuffart
This script is used to translate common well-positioned nucleosome positions from a strain to another strain and stores it into a table. 
460 dadb6a4d Florent Chuffart
461 3961deb6 Florent Chuffart
For example, the file `results/2014-04/RM_wp_tr_2_BY.tab` contains RM well-positioned nucleosomes translated into the BY genome coordinates. It is composed of following columns:
462 dadb6a4d Florent Chuffart
463 dadb6a4d Florent Chuffart
 - strain_ref, the reference genome (in which positioned are defined)
464 dadb6a4d Florent Chuffart
 - begin, the translated lower bound of the nucleosome
465 dadb6a4d Florent Chuffart
 - end, the translated upper bound of the nucleosome
466 e5603c3f Florent Chuffart
 - chr, the number of chromosomes for the reference genome (in which positioned are defined)
467 dadb6a4d Florent Chuffart
 - length, the length of the nucleosome (could be negative)
468 dadb6a4d Florent Chuffart
 - cur_index, the index of the CUR
469 dadb6a4d Florent Chuffart
 - index_nuc, the index of the nucleosome in the CUR
470 dadb6a4d Florent Chuffart
471 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
472 935a568c Florent Chuffart
473 e5603c3f Florent Chuffart
.. code:: bash
474 935a568c Florent Chuffart
475 e5603c3f Florent Chuffart
  source("src/current/translate_common_wp.R")
476 b20637ed Florent Chuffart
477 b20637ed Florent Chuffart
478 e5603c3f Florent Chuffart
The Script split_samples.R
479 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^
480 b20637ed Florent Chuffart
481 3961deb6 Florent Chuffart
To optimize memory space usage, we split and compress TemplateFilter input files according to their corresponding  chromosome. for example, `sample_1_TF.tab` will be split into :
482 b20637ed Florent Chuffart
483 e5603c3f Florent Chuffart
  - sample_1_chr_1_splited_sample.tab.gz
484 e5603c3f Florent Chuffart
  - sample_1_chr_2_splited_sample.tab.gz
485 e5603c3f Florent Chuffart
  - ...
486 e5603c3f Florent Chuffart
  - sample_1_chr_17_splited_sample.tab.gz
487 e5603c3f Florent Chuffart
  
488 e5603c3f Florent Chuffart
489 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
490 b20637ed Florent Chuffart
491 b20637ed Florent Chuffart
.. code:: bash
492 b20637ed Florent Chuffart
493 e5603c3f Florent Chuffart
  source("src/current/split_samples.R")
494 b20637ed Florent Chuffart
495 b20637ed Florent Chuffart
496 e5603c3f Florent Chuffart
The Script count_reads.R
497 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^
498 e5603c3f Florent Chuffart
499 e5603c3f Florent Chuffart
To associate a number of observations (read) to each nucleosome we run the script `count_reads.R`. It produces the files `BY_RM_H3K14ac_wp_and_nbreads.tab`, `BY_RM_H3K14ac_unr_and_nbreads.tab` `BY_RM_Mnase_Seq_wp_and_nbreads.tab` and `BY_RM_Mnase_Seq_unr_and_nbreads.tab`  
500 e5603c3f Florent Chuffart
for H3K14ac common well-positioned nucleosomes, H3K14ac UNRs, Mnase common well-positioned nucleosomes and Mnase UNRs respectively. 
501 e5603c3f Florent Chuffart
502 e5603c3f Florent Chuffart
For example, the file `BY_RM_H3K14ac_unr_and_nbreads.tab` contains counted reads for well-positioned nucleosomes with the experimental condition ChIP H3K14ac. It is composed of the following columns:
503 e5603c3f Florent Chuffart
504 e5603c3f Florent Chuffart
  - chr_BY, the number of the chromosome for BY
505 e5603c3f Florent Chuffart
  - lower_bound_BY, the lower bound of the nucleosome for BY
506 e5603c3f Florent Chuffart
  - upper_bound_BY, the upper bound of the nucleosome  for BY
507 e5603c3f Florent Chuffart
  - index_nuc_BY, the index of the BY nucleosome in the CUR for BY
508 e5603c3f Florent Chuffart
  - chr_RM, the number of the chromosome for RM
509 e5603c3f Florent Chuffart
  - lower_bound_RM, the lower bound of the nucleosome for RM
510 e5603c3f Florent Chuffart
  - upper_bound_RM, the upper bound of the nucleosome  for RM
511 e5603c3f Florent Chuffart
  - index_nuc_RM,the index of the RM nucleosome in the CUR for RM
512 e5603c3f Florent Chuffart
  - cur_index, index of the CUR
513 e5603c3f Florent Chuffart
  - BY_H3K14ac_36, the number of reads for the current nucleosome for the sample 36
514 e5603c3f Florent Chuffart
  - BY_H3K14ac_37, #reads for sample 37
515 e5603c3f Florent Chuffart
  - BY_H3K14ac_53, #reads for sample 53
516 e5603c3f Florent Chuffart
  - RM_H3K14ac_38, #reads for sample 38
517 e5603c3f Florent Chuffart
  - RM_H3K14ac_39, #reads for sample 39
518 e5603c3f Florent Chuffart
519 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
520 935a568c Florent Chuffart
521 935a568c Florent Chuffart
.. code:: bash
522 935a568c Florent Chuffart
523 e5603c3f Florent Chuffart
  source("src/current/count_reads.R")
524 e5603c3f Florent Chuffart
525 e5603c3f Florent Chuffart
526 e5603c3f Florent Chuffart
The Script get_size_factors.R
527 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
528 e5603c3f Florent Chuffart
529 e5603c3f Florent Chuffart
530 e5603c3f Florent Chuffart
This script uses the DESeq function `estimateSizeFactors` to compute the size factor of each sample. It corresponds to normalisation of read counts from sample to sample, as determined by DESeq. When a sample has n reads for a nucleosome or a UNR,
531 e5603c3f Florent Chuffart
the normalised count is n/f where f is the factor contained in this file.
532 e5603c3f Florent Chuffart
The script dumps computed size factors into the file `size_factors.tab`. This file has the form:
533 e5603c3f Florent Chuffart
534 e5603c3f Florent Chuffart
========= ======= ======= =======
535 e5603c3f Florent Chuffart
sample_id      wp     unr   wpunr
536 e5603c3f Florent Chuffart
========= ======= ======= =======
537 e5603c3f Florent Chuffart
        1 0.87396 0.88097 0.87584
538 e5603c3f Florent Chuffart
        2 1.07890 1.07440 1.07760
539 e5603c3f Florent Chuffart
        3 1.06400 1.05890 1.06250
540 e5603c3f Florent Chuffart
        4 0.85782 0.87948 0.86305
541 e5603c3f Florent Chuffart
        5 0.97577 0.96590 0.97307
542 e5603c3f Florent Chuffart
        6 1.19630 1.18120 1.19190
543 e5603c3f Florent Chuffart
       36 0.93318 0.92762 0.93166
544 e5603c3f Florent Chuffart
       37 0.48315 0.48453 0.48350
545 e5603c3f Florent Chuffart
       38 1.11240 1.11210 1.11230
546 e5603c3f Florent Chuffart
       39 0.89897 0.89917 0.89903
547 e5603c3f Florent Chuffart
       53 2.22650 2.22700 2.22660
548 e5603c3f Florent Chuffart
========= ======= ======= =======
549 e5603c3f Florent Chuffart
550 e5603c3f Florent Chuffart
sample_id are given in file samples.csv
551 935a568c Florent Chuffart
552 3961deb6 Florent Chuffart
If you don't know which column to use for normalization, we recommend using wpunr.
553 935a568c Florent Chuffart
554 3961deb6 Florent Chuffart
Here are the details of the factors produced:
555 e5603c3f Florent Chuffart
556 e5603c3f Florent Chuffart
  - unr: factor computed from data of UNR regions. These regions are defined for every pairs of aligned genomes (e.g. BY_RM)
557 e5603c3f Florent Chuffart
  - wp: same, but for well-positioned nucleosomes.
558 e5603c3f Florent Chuffart
  - wpunr: both types of regions.
559 e5603c3f Florent Chuffart
560 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
561 935a568c Florent Chuffart
562 935a568c Florent Chuffart
.. code:: bash
563 935a568c Florent Chuffart
564 e5603c3f Florent Chuffart
  source("src/current/get_size_factors.R")
565 935a568c Florent Chuffart
566 935a568c Florent Chuffart
567 e5603c3f Florent Chuffart
The Script launch_deseq.R
568 935a568c Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^
569 935a568c Florent Chuffart
570 e5603c3f Florent Chuffart
Finally, the script `launch_deseq.R` perform statistical analysis on each nucleosome using `DESeq`. It produces files:
571 e5603c3f Florent Chuffart
 
572 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_wp_snep.tab
573 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_unr_snep.tab
574 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_wpunr_snep.tab
575 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_wp_mnase.tab
576 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_unr_mnase.tab
577 e5603c3f Florent Chuffart
  - results/current/BY_RM_H3K14ac_wpunr_mnase.tab
578 e5603c3f Florent Chuffart
579 e5603c3f Florent Chuffart
These files are organised with the following columns (see file `BY_RM_H3K14ac_wp_snep.tab` for an example):
580 e5603c3f Florent Chuffart
581 e5603c3f Florent Chuffart
  - chr_BY, the number of the chromosome for BY
582 e5603c3f Florent Chuffart
  - lower_bound_BY, the lower bound of the nucleosome for BY
583 e5603c3f Florent Chuffart
  - upper_bound_BY, the upper bound of the nucleosome  for BY
584 e5603c3f Florent Chuffart
  - index_nuc_BY, the index of the BY nucleosome in the CUR for BY
585 e5603c3f Florent Chuffart
  - chr_RM, the number of the chromosome for RM
586 e5603c3f Florent Chuffart
  - lower_bound_RM, the lower bound of the nucleosome for RM
587 e5603c3f Florent Chuffart
  - upper_bound_RM, the upper bound of the nucleosome  for RM
588 e5603c3f Florent Chuffart
  - index_nuc_RM,the index of the RM nucleosome in the CUR for RM
589 e5603c3f Florent Chuffart
  - cur_index, index of the CUR
590 e5603c3f Florent Chuffart
  - form 
591 e5603c3f Florent Chuffart
  - BY_Mnase_Seq_1, the number of reads for the current nucleosome for the sample 1  
592 e5603c3f Florent Chuffart
593 e5603c3f Florent Chuffart
Next columns concern indicators for each sample:
594 e5603c3f Florent Chuffart
595 e5603c3f Florent Chuffart
  - BY_Mnase_Seq_2, #reads for sample 2
596 e5603c3f Florent Chuffart
  - BY_Mnase_Seq_3, #reads for sample 3  
597 e5603c3f Florent Chuffart
  - RM_Mnase_Seq_4, #reads for sample 4  
598 e5603c3f Florent Chuffart
  - RM_Mnase_Seq_5, #reads for sample 5
599 e5603c3f Florent Chuffart
  - RM_Mnase_Seq_6, #reads for sample 6
600 e5603c3f Florent Chuffart
  - BY_H3K14ac_36, #reads for sample 36
601 e5603c3f Florent Chuffart
  - BY_H3K14ac_37, #reads for sample 37
602 e5603c3f Florent Chuffart
  - BY_H3K14ac_53, #reads for sample 53
603 e5603c3f Florent Chuffart
  - RM_H3K14ac_38, #reads for sample 38
604 e5603c3f Florent Chuffart
  - RM_H3K14ac_39, #reads for sample 39
605 e5603c3f Florent Chuffart
  
606 e5603c3f Florent Chuffart
The 5 last columns concern DESeq analysis:
607 e5603c3f Florent Chuffart
608 e5603c3f Florent Chuffart
  - manip[a_manip] strain[a_strain] manip[a_strain]:strain[a_strain], the manip (marker) effect, the strain effect and the snep effect. These are the coefficients of the fitted generalized linear model.
609 3961deb6 Florent Chuffart
  - pvalsGLM, the pvalue resulting from the comparison of the GLM model considering the interaction term *marker:strain* to the GLM model that does not consider it. This is the statsitcial significance of the interaction term and therefore the statistical significance of the SNEP.
610 e5603c3f Florent Chuffart
  - snep_index, a boolean set to TRUE if the pvalueGLM value is under the threshold computed with FDR function with a rate set to 0.0001.
611 e5603c3f Florent Chuffart
612 e5603c3f Florent Chuffart
To execute this script, run the following command in your R console:
613 e5603c3f Florent Chuffart
614 935a568c Florent Chuffart
.. code:: bash
615 935a568c Florent Chuffart
616 e5603c3f Florent Chuffart
  source("src/current/launch_deseq.R")
617 935a568c Florent Chuffart
618 935a568c Florent Chuffart
619 e5603c3f Florent Chuffart
Results: Number of SNEPs
620 e5603c3f Florent Chuffart
------------------------
621 935a568c Florent Chuffart
622 e5603c3f Florent Chuffart
Here are the number of computed SNEPs for each forms.
623 935a568c Florent Chuffart
624 e5603c3f Florent Chuffart
===== ======= ===== =======
625 e5603c3f Florent Chuffart
 form strains #nucs H3K14ac
626 e5603c3f Florent Chuffart
===== ======= ===== =======
627 e5603c3f Florent Chuffart
   wp   BY-RM 30464    3549
628 e5603c3f Florent Chuffart
  unr   BY-RM  9497    1559
629 e5603c3f Florent Chuffart
wpunr   BY-RM 39961    5240
630 e5603c3f Florent Chuffart
===== ======= ===== =======
631 e5603c3f Florent Chuffart
  
632 935a568c Florent Chuffart
633 935a568c Florent Chuffart
634 935a568c Florent Chuffart
635 935a568c Florent Chuffart
636 935a568c Florent Chuffart
637 e5603c3f Florent Chuffart
APPENDICE: Generate .c2c Files
638 e5603c3f Florent Chuffart
------------------------------
639 935a568c Florent Chuffart
640 3961deb6 Florent Chuffart
The `.c2c` files is a simple table that describes how two genome
641 3961deb6 Florent Chuffart
sequences are aligned. This file can be generated by using scripts that were developed in NucleoMiner 1.0 (Nagarajan et al. PLoS Genetics 2010) and which we provide in this release of NucleoMiner2.
642 5badc2fd Florent Chuffart
643 5badc2fd Florent Chuffart
644 3961deb6 Florent Chuffart
To use these scripts on your UNIX/LINUX computer you need first to install MUMmer which is designed to rapidly align entire genomes, whether in complete or draft form.
645 935a568c Florent Chuffart
646 3961deb6 Florent Chuffart
Installing MUMmer
647 3961deb6 Florent Chuffart
^^^^^^^^^^^^^^^^^
648 935a568c Florent Chuffart
649 3961deb6 Florent Chuffart
Get the last version of MUMmer archive on your computer (MUMmer3.23.tar.gz is provided in the directory deps of your working directory). Copy it in a dedicated directory. Install it locally into the src folder of you working directory by typing (working directory):
650 935a568c Florent Chuffart
651 3961deb6 Florent Chuffart
tar -xvzf MUMmer3.23.tar.gz
652 935a568c Florent Chuffart
653 935a568c Florent Chuffart
654 935a568c Florent Chuffart
.. code:: bash
655 935a568c Florent Chuffart
656 c25275e2 Florent Chuffart
  cd src 
657 c25275e2 Florent Chuffart
  tar xfvz ../deps/MUMmer3.23.tar.gz
658 c25275e2 Florent Chuffart
  cd MUMmer3.23
659 c25275e2 Florent Chuffart
  make check
660 c25275e2 Florent Chuffart
  make install
661 935a568c Florent Chuffart
662 c25275e2 Florent Chuffart
Installing NucleoMiner 1.0 scripts
663 c25275e2 Florent Chuffart
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
664 e5603c3f Florent Chuffart
665 3961deb6 Florent Chuffart
Get the nucleominer-1.0.tar.gz archive on your computer (this archive is provided in the directory deps of your working directory). Install it locally into the src folder of you working directory by typing (working directory):
666 e5603c3f Florent Chuffart
667 935a568c Florent Chuffart
668 e5603c3f Florent Chuffart
.. code:: bash
669 935a568c Florent Chuffart
670 c25275e2 Florent Chuffart
  cd src 
671 c25275e2 Florent Chuffart
  tar xfvz ../deps/nucleominer-1.0.tar.gz 
672 c25275e2 Florent Chuffart
  cd ..
673 935a568c Florent Chuffart
674 3961deb6 Florent Chuffart
This creates a directory that contains  NucleoMiner 1.0 scripts (src/nucleominer-1.0/scripts). 
675 935a568c Florent Chuffart
676 e5603c3f Florent Chuffart
677 e5603c3f Florent Chuffart
Generate .c2c Files
678 e5603c3f Florent Chuffart
^^^^^^^^^^^^^^^^^^^
679 e5603c3f Florent Chuffart
680 e5603c3f Florent Chuffart
To generate .c2c files you need to type the following command in a terminal:
681 e5603c3f Florent Chuffart
682 e5603c3f Florent Chuffart
.. code:: bash
683 935a568c Florent Chuffart
684 c25275e2 Florent Chuffart
  export PATH=$PATH:src/MUMmer3.23:src/nucleominer-1.0/scripts
685 c25275e2 Florent Chuffart
  export PERL5LIB=$PERL5LIB:src/nucleominer-1.0/scripts/
686 c25275e2 Florent Chuffart
  NMgxcomp data/saccharomyces_cerevisiae_BY_S288c_chromosomes.fasta \
687 c25275e2 Florent Chuffart
    data/saccharomyces_cerevisiae_rm11-1a_1_supercontigs.fasta \
688 c25275e2 Florent Chuffart
    data/byxrm 2>NMgxcomp.log
689 e5603c3f Florent Chuffart
            
690 c25275e2 Florent Chuffart
After execution, the directory `data` will hold the .c2c files.