root / doc / sphinx_doc / build / text / ref.txt @ 6e0010bc
Historique | Voir | Annoter | Télécharger (28,11 ko)
1 |
|
---|---|
2 |
References |
3 |
********** |
4 |
|
5 |
|
6 |
Python Reference |
7 |
================ |
8 |
|
9 |
|
10 |
R Reference |
11 |
=========== |
12 |
|
13 |
|
14 |
Arabic to Roman pair list. |
15 |
-------------------------- |
16 |
|
17 |
|
18 |
Description |
19 |
~~~~~~~~~~~ |
20 |
|
21 |
Util to convert Arabicto Roman |
22 |
|
23 |
|
24 |
Usage |
25 |
~~~~~ |
26 |
|
27 |
ARAB2ROM() |
28 |
|
29 |
|
30 |
Author(s) |
31 |
~~~~~~~~~ |
32 |
|
33 |
Florent Chuffart |
34 |
|
35 |
R: False Discovery Rate |
36 |
|
37 |
|
38 |
False Discovery Rate |
39 |
-------------------- |
40 |
|
41 |
|
42 |
Description |
43 |
~~~~~~~~~~~ |
44 |
|
45 |
From a vector x of independent p-values, extract the cutoff |
46 |
corresponding to the specified FDR. See Benjamini & Hochberg 1995 |
47 |
paper |
48 |
|
49 |
|
50 |
Usage |
51 |
~~~~~ |
52 |
|
53 |
FDR(x, FDR) |
54 |
|
55 |
|
56 |
Arguments |
57 |
~~~~~~~~~ |
58 |
|
59 |
"x" |
60 |
|
61 |
A vector x of independent p-values. |
62 |
|
63 |
"FDR" |
64 |
|
65 |
The specified FDR. |
66 |
|
67 |
|
68 |
Value |
69 |
~~~~~ |
70 |
|
71 |
Return the the corresponding cutoff. |
72 |
|
73 |
|
74 |
Author(s) |
75 |
~~~~~~~~~ |
76 |
|
77 |
Gael Yvert, Florent Chuffart |
78 |
|
79 |
|
80 |
Examples |
81 |
~~~~~~~~ |
82 |
|
83 |
print("example") |
84 |
|
85 |
R: Roman to Arabic pair list. |
86 |
|
87 |
|
88 |
Roman to Arabic pair list. |
89 |
-------------------------- |
90 |
|
91 |
|
92 |
Description |
93 |
~~~~~~~~~~~ |
94 |
|
95 |
Util to convert Roman to Arabic |
96 |
|
97 |
|
98 |
Usage |
99 |
~~~~~ |
100 |
|
101 |
ROM2ARAB() |
102 |
|
103 |
|
104 |
Author(s) |
105 |
~~~~~~~~~ |
106 |
|
107 |
Florent Chuffart |
108 |
|
109 |
R: Aggregate replicated sample's nucleosomes. |
110 |
|
111 |
|
112 |
Aggregate replicated sample's nucleosomes. |
113 |
------------------------------------------ |
114 |
|
115 |
|
116 |
Description |
117 |
~~~~~~~~~~~ |
118 |
|
119 |
This function aggregates nucleosome for replicated samples. It uses |
120 |
TemplateFilter ouput of each sample as replicate. Each sample owns a |
121 |
set of nucleosomes computed using TemplateFilter and ordered by the |
122 |
position of their center. Adajacent nucleosomes are compared two by |
123 |
two. Comparison is based on a log likelihood ratio score. The issue of |
124 |
comparison is adjacents nucleosomes merge or separation. Finally the |
125 |
function returns a list of clusters and all computed *lod_scores*. |
126 |
Each cluster ows an attribute *wp* for "well positionned". This |
127 |
attribute is set as *TRUE* if the cluster is composed of exactly one |
128 |
nucleosomes of each sample. |
129 |
|
130 |
|
131 |
Usage |
132 |
~~~~~ |
133 |
|
134 |
aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07) |
135 |
|
136 |
|
137 |
Arguments |
138 |
~~~~~~~~~ |
139 |
|
140 |
"samples" |
141 |
|
142 |
A list of samples. Each sample is a list like *sample = list(id=..., |
143 |
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
144 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. |
145 |
|
146 |
"lod_thres" |
147 |
|
148 |
Log likelihood ration threshold. |
149 |
|
150 |
"coord_max" |
151 |
|
152 |
A too big value to be a coord for a nucleosome lower bound. |
153 |
|
154 |
|
155 |
Value |
156 |
~~~~~ |
157 |
|
158 |
Returns a list of clusterized nucleosomes, and all computed lod |
159 |
scores. |
160 |
|
161 |
|
162 |
Author(s) |
163 |
~~~~~~~~~ |
164 |
|
165 |
Florent Chuffart |
166 |
|
167 |
|
168 |
Examples |
169 |
~~~~~~~~ |
170 |
|
171 |
# Dealing with a region of interest |
172 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301)) |
173 |
samples = list() |
174 |
for (i in 1:3) { |
175 |
# Create TF output |
176 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
177 |
outputs = dfadd(NULL,tf_nuc) |
178 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
179 |
# Generate corresponding reads |
180 |
nb_reads = round(runif(1,170,230)) |
181 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
182 |
u_reads = sort(unique(reads)) |
183 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
184 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
185 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
186 |
u_reads = u_reads + shifts |
187 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
188 |
"V2" = u_reads, |
189 |
"V3" = strands, |
190 |
"V4" = counts), stringsAsFactors=FALSE) |
191 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
192 |
} |
193 |
print(aggregate_intra_strain_nucs(samples)) |
194 |
|
195 |
R: Aligns nucleosomes between 2 strains. |
196 |
|
197 |
|
198 |
Aligns nucleosomes between 2 strains. |
199 |
------------------------------------- |
200 |
|
201 |
|
202 |
Description |
203 |
~~~~~~~~~~~ |
204 |
|
205 |
This function aligns nucs between two strains for a given genome |
206 |
region. |
207 |
|
208 |
|
209 |
Usage |
210 |
~~~~~ |
211 |
|
212 |
align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, |
213 |
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100, |
214 |
config = NULL, ...) |
215 |
|
216 |
|
217 |
Arguments |
218 |
~~~~~~~~~ |
219 |
|
220 |
"replicates" |
221 |
|
222 |
Set of replicates, ideally 3 per strain. |
223 |
|
224 |
"wp_nucs_strain_ref1" |
225 |
|
226 |
List of aggregates nucleosome for strain 1. If it's null this list |
227 |
will be computed. |
228 |
|
229 |
"wp_nucs_strain_ref2" |
230 |
|
231 |
List of aggregates nucleosome for strain 2. If it's null this list |
232 |
will be computed. |
233 |
|
234 |
"corr_thres" |
235 |
|
236 |
Correlation threshold. |
237 |
|
238 |
"lod_thres" |
239 |
|
240 |
LOD cut off. |
241 |
|
242 |
"config" |
243 |
|
244 |
GLOBAL config variable |
245 |
|
246 |
"..." |
247 |
|
248 |
A list of parameters that will be passed to |
249 |
*aggregate_intra_strain_nucs* if needed. |
250 |
|
251 |
|
252 |
Value |
253 |
~~~~~ |
254 |
|
255 |
Returns a list of clusterized nucleosomes, and all computed lod |
256 |
scores. |
257 |
|
258 |
|
259 |
Author(s) |
260 |
~~~~~~~~~ |
261 |
|
262 |
Florent Chuffart |
263 |
|
264 |
|
265 |
Examples |
266 |
~~~~~~~~ |
267 |
|
268 |
# Define new translate_cur function... |
269 |
translate_cur = function(roi, strain2, big_cur=NULL, config=NULL) { |
270 |
return(roi) |
271 |
} |
272 |
# Binding it by uncomment follwing lines. |
273 |
unlockBinding("translate_cur", as.environment("package:nucleominer")) |
274 |
unlockBinding("translate_cur", getNamespace("nucleominer")) |
275 |
assign("translate_cur", translate_cur, "package:nucleominer") |
276 |
assign("translate_cur", translate_cur, getNamespace("nucleominer")) |
277 |
lockBinding("translate_cur", getNamespace("nucleominer")) |
278 |
lockBinding("translate_cur", as.environment("package:nucleominer")) |
279 |
|
280 |
# Dealing with a region of interest |
281 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1") |
282 |
roi2 = translate_cur(roi, roi$strain_ref1) |
283 |
replicates = list() |
284 |
for (j in 1:2) { |
285 |
samples = list() |
286 |
for (i in 1:3) { |
287 |
# Create TF output |
288 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
289 |
outputs = dfadd(NULL,tf_nuc) |
290 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
291 |
# Generate corresponding reads |
292 |
nb_reads = round(runif(1,170,230)) |
293 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
294 |
u_reads = sort(unique(reads)) |
295 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
296 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
297 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
298 |
u_reads = u_reads + shifts |
299 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
300 |
"V2" = u_reads, |
301 |
"V3" = strands, |
302 |
"V4" = counts), stringsAsFactors=FALSE) |
303 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
304 |
} |
305 |
replicates[[length(replicates) + 1]] = samples |
306 |
} |
307 |
print(align_inter_strain_nucs(replicates)) |
308 |
|
309 |
R: Launch deseq methods. |
310 |
|
311 |
|
312 |
Launch deseq methods. |
313 |
--------------------- |
314 |
|
315 |
|
316 |
Description |
317 |
~~~~~~~~~~~ |
318 |
|
319 |
This function is based on deseq example. It mormalizes data, fit data |
320 |
to GLM model with and without interaction term and compare the two |
321 |
l;=models. |
322 |
|
323 |
|
324 |
Usage |
325 |
~~~~~ |
326 |
|
327 |
analyse_design(snep_design, reads) |
328 |
|
329 |
|
330 |
Arguments |
331 |
~~~~~~~~~ |
332 |
|
333 |
"snep_design" |
334 |
|
335 |
The design to considere. |
336 |
|
337 |
"reads" |
338 |
|
339 |
The data to considere. |
340 |
|
341 |
|
342 |
Author(s) |
343 |
~~~~~~~~~ |
344 |
|
345 |
Florent Chuffart |
346 |
|
347 |
R: Stage replicates data |
348 |
|
349 |
|
350 |
Stage replicates data |
351 |
--------------------- |
352 |
|
353 |
|
354 |
Description |
355 |
~~~~~~~~~~~ |
356 |
|
357 |
This function loads in memory data corresponding to the given |
358 |
experiments. |
359 |
|
360 |
|
361 |
Usage |
362 |
~~~~~ |
363 |
|
364 |
build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE, |
365 |
all_samples, config = NULL) |
366 |
|
367 |
|
368 |
Arguments |
369 |
~~~~~~~~~ |
370 |
|
371 |
"expe" |
372 |
|
373 |
a list of vector corresponding to vector of replicates. |
374 |
|
375 |
"roi" |
376 |
|
377 |
the region that we are interested in. |
378 |
|
379 |
"only_fetch" |
380 |
|
381 |
filter or not inputs. |
382 |
|
383 |
"get_genome" |
384 |
|
385 |
Load or not corresponding genome. |
386 |
|
387 |
"all_samples" |
388 |
|
389 |
Global list of samples. |
390 |
|
391 |
"config" |
392 |
|
393 |
GLOBAL config variable. |
394 |
|
395 |
|
396 |
Author(s) |
397 |
~~~~~~~~~ |
398 |
|
399 |
Florent Chuffart |
400 |
|
401 |
|
402 |
Examples |
403 |
~~~~~~~~ |
404 |
|
405 |
# library(rjson) |
406 |
# library(nucleominer) |
407 |
# |
408 |
# # Read config file |
409 |
# json_conf_file = "nucleo_miner_config.json" |
410 |
# config = fromJSON(paste(readLines(json_conf_file), collapse="")) |
411 |
# # Read sample file |
412 |
# all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE) |
413 |
# # here are the sample ids in a list |
414 |
# expes = list(c(1)) |
415 |
# # here is the region that we wnt to see the coverage |
416 |
# cur = list(chr="8", begin=472000, end=474000, strain_ref="BY") |
417 |
# # it displays the corverage |
418 |
# replicates = build_replicates(expes, cur, all_samples=all_samples, config=config) |
419 |
# out = watch_samples(replicates, config$READ_LENGTH, |
420 |
# plot_coverage = TRUE, |
421 |
# plot_squared_reads = FALSE, |
422 |
# plot_ref_genome = FALSE, |
423 |
# plot_arrow_raw_reads = FALSE, |
424 |
# plot_arrow_nuc_reads = FALSE, |
425 |
# plot_gaussian_reads = FALSE, |
426 |
# plot_gaussian_unified_reads = FALSE, |
427 |
# plot_ellipse_nucs = FALSE, |
428 |
# plot_wp_nucs = FALSE, |
429 |
# plot_wp_nuc_model = FALSE, |
430 |
# plot_common_nucs = FALSE, |
431 |
# height = 50) |
432 |
|
433 |
R: Extract a sub part of the corresponding c2c file |
434 |
|
435 |
|
436 |
Extract a sub part of the corresponding c2c file |
437 |
------------------------------------------------ |
438 |
|
439 |
|
440 |
Description |
441 |
~~~~~~~~~~~ |
442 |
|
443 |
This fonction allow to acces to a specific part of the c2c file. |
444 |
|
445 |
|
446 |
Usage |
447 |
~~~~~ |
448 |
|
449 |
c2c_extraction(strain1, strain2, chr = NULL, lower_bound = NULL, |
450 |
upper_bound = NULL, config = NULL) |
451 |
|
452 |
|
453 |
Arguments |
454 |
~~~~~~~~~ |
455 |
|
456 |
"strain1" |
457 |
|
458 |
the key strain |
459 |
|
460 |
"strain2" |
461 |
|
462 |
the target strain |
463 |
|
464 |
"chr" |
465 |
|
466 |
if defined, the c2c will filtered according to the chromosome value |
467 |
|
468 |
"lower_bound" |
469 |
|
470 |
if defined, the c2c will filtered for part of the genome upper than |
471 |
lower_bound |
472 |
|
473 |
"upper_bound" |
474 |
|
475 |
if defined, the c2c will filtered for part of the genome lower than |
476 |
upper_bound |
477 |
|
478 |
"config" |
479 |
|
480 |
GLOBAL config variable |
481 |
|
482 |
|
483 |
Author(s) |
484 |
~~~~~~~~~ |
485 |
|
486 |
Florent Chuffart |
487 |
|
488 |
R: reformat an "apply manipulated" list of regions |
489 |
|
490 |
|
491 |
reformat an "apply manipulated" list of regions |
492 |
----------------------------------------------- |
493 |
|
494 |
|
495 |
Description |
496 |
~~~~~~~~~~~ |
497 |
|
498 |
Utils to reformat an "apply manipulated" list of regions |
499 |
|
500 |
|
501 |
Usage |
502 |
~~~~~ |
503 |
|
504 |
collapse_regions(regions) |
505 |
|
506 |
|
507 |
Arguments |
508 |
~~~~~~~~~ |
509 |
|
510 |
+-----------------+------+ |
511 |
+-----------------+------+ |
512 |
|
513 |
|
514 |
Author(s) |
515 |
~~~~~~~~~ |
516 |
|
517 |
Florent Chuffart |
518 |
|
519 |
R: Compute Common Uninterrupted Regions (CUR) |
520 |
|
521 |
|
522 |
Compute Common Uninterrupted Regions (CUR) |
523 |
------------------------------------------ |
524 |
|
525 |
|
526 |
Description |
527 |
~~~~~~~~~~~ |
528 |
|
529 |
CURs are regions that can be aligned between the genomes |
530 |
|
531 |
|
532 |
Usage |
533 |
~~~~~ |
534 |
|
535 |
compute_inter_all_strain_curs(diff_allowed = 30, min_cur_width = 4000, |
536 |
config = NULL) |
537 |
|
538 |
|
539 |
Arguments |
540 |
~~~~~~~~~ |
541 |
|
542 |
"diff_allowed" |
543 |
|
544 |
the maximum indel width allowe din a CUR |
545 |
|
546 |
"min_cur_width" |
547 |
|
548 |
The minimum width of a CUR |
549 |
|
550 |
"config" |
551 |
|
552 |
GLOBAL config variable |
553 |
|
554 |
|
555 |
Author(s) |
556 |
~~~~~~~~~ |
557 |
|
558 |
Florent Chuffart |
559 |
|
560 |
R: Crop bound of regions according to region of interest bound |
561 |
|
562 |
|
563 |
Crop bound of regions according to region of interest bound |
564 |
----------------------------------------------------------- |
565 |
|
566 |
|
567 |
Description |
568 |
~~~~~~~~~~~ |
569 |
|
570 |
The fucntion is no more necessary since we remove "big_cur" bug in |
571 |
translate_cur function. |
572 |
|
573 |
|
574 |
Usage |
575 |
~~~~~ |
576 |
|
577 |
crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL) |
578 |
|
579 |
|
580 |
Arguments |
581 |
~~~~~~~~~ |
582 |
|
583 |
"tmp_fuzzy_nucs" |
584 |
|
585 |
the regiuons to be croped. |
586 |
|
587 |
"roi" |
588 |
|
589 |
The region of interest. |
590 |
|
591 |
"strain" |
592 |
|
593 |
The strain to consider. |
594 |
|
595 |
"config" |
596 |
|
597 |
GLOBAL config variable |
598 |
|
599 |
|
600 |
Author(s) |
601 |
~~~~~~~~~ |
602 |
|
603 |
Florent Chuffart |
604 |
|
605 |
R: Adding list to a dataframe. |
606 |
|
607 |
|
608 |
Adding list to a dataframe. |
609 |
--------------------------- |
610 |
|
611 |
|
612 |
Description |
613 |
~~~~~~~~~~~ |
614 |
|
615 |
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. |
616 |
Return the dataframe *df*. |
617 |
|
618 |
|
619 |
Usage |
620 |
~~~~~ |
621 |
|
622 |
dfadd(df, l) |
623 |
|
624 |
|
625 |
Arguments |
626 |
~~~~~~~~~ |
627 |
|
628 |
"df" |
629 |
|
630 |
A dataframe |
631 |
|
632 |
"l" |
633 |
|
634 |
A list |
635 |
|
636 |
|
637 |
Value |
638 |
~~~~~ |
639 |
|
640 |
Return the dataframe *df*. |
641 |
|
642 |
|
643 |
Author(s) |
644 |
~~~~~~~~~ |
645 |
|
646 |
Florent Chuffart |
647 |
|
648 |
|
649 |
Examples |
650 |
~~~~~~~~ |
651 |
|
652 |
## Here dataframe is NULL |
653 |
print(df) |
654 |
df = NULL |
655 |
|
656 |
# Initialize df |
657 |
df = dfadd(df, list(key1 = "value1", key2 = "value2")) |
658 |
print(df) |
659 |
|
660 |
# Adding elements to df |
661 |
df = dfadd(df, list(key1 = "value1'", key2 = "value2'")) |
662 |
print(df) |
663 |
|
664 |
R: Prefetch data |
665 |
|
666 |
|
667 |
Prefetch data |
668 |
------------- |
669 |
|
670 |
|
671 |
Description |
672 |
~~~~~~~~~~~ |
673 |
|
674 |
Fetch and filter inputs and outpouts per region of interest. Organize |
675 |
it per replicates. |
676 |
|
677 |
|
678 |
Usage |
679 |
~~~~~ |
680 |
|
681 |
fetch_mnase_replicates(strain, roi, all_samples, config = NULL, |
682 |
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE) |
683 |
|
684 |
|
685 |
Arguments |
686 |
~~~~~~~~~ |
687 |
|
688 |
"strain" |
689 |
|
690 |
The strain we want mnase replicatesList of replicates. Each replicates |
691 |
is a vector of sample ids. |
692 |
|
693 |
"roi" |
694 |
|
695 |
Region of interest. |
696 |
|
697 |
"all_samples" |
698 |
|
699 |
Global list of samples. |
700 |
|
701 |
"config" |
702 |
|
703 |
GLOBAL config variable |
704 |
|
705 |
"only_fetch" |
706 |
|
707 |
If TRUE, only fetch and not filtering. It is used tio load sample |
708 |
files into memory before forking. |
709 |
|
710 |
"get_genome" |
711 |
|
712 |
If TRUE, load corresponding genome sequence. |
713 |
|
714 |
"get_ouputs" |
715 |
|
716 |
If TRUE, get also ouput corresponding TF output files. |
717 |
|
718 |
|
719 |
Author(s) |
720 |
~~~~~~~~~ |
721 |
|
722 |
Florent Chuffart |
723 |
|
724 |
R: Filter TemplateFilter inputs |
725 |
|
726 |
|
727 |
Filter TemplateFilter inputs |
728 |
---------------------------- |
729 |
|
730 |
|
731 |
Description |
732 |
~~~~~~~~~~~ |
733 |
|
734 |
This function filters TemplateFilter inputs according genome area |
735 |
observed properties. It takes into account reads that are at the |
736 |
frontier of this area and the strand of these reads. |
737 |
|
738 |
|
739 |
Usage |
740 |
~~~~~ |
741 |
|
742 |
filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, |
743 |
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE) |
744 |
|
745 |
|
746 |
Arguments |
747 |
~~~~~~~~~ |
748 |
|
749 |
"inputs" |
750 |
|
751 |
TF inputs to be filtered. |
752 |
|
753 |
"chr" |
754 |
|
755 |
Chromosome observed, here chr is an integer. |
756 |
|
757 |
"x_min" |
758 |
|
759 |
Coordinate of the first bp observed. |
760 |
|
761 |
"x_max" |
762 |
|
763 |
Coordinate of the last bp observed. |
764 |
|
765 |
"nuc_width" |
766 |
|
767 |
Nucleosome width. |
768 |
|
769 |
"only_f" |
770 |
|
771 |
Filter only F reads. |
772 |
|
773 |
"only_r" |
774 |
|
775 |
Filter only R reads. |
776 |
|
777 |
"filter_for_coverage" |
778 |
|
779 |
Does it filter for plot coverage? |
780 |
|
781 |
|
782 |
Value |
783 |
~~~~~ |
784 |
|
785 |
Returns filtred inputs. |
786 |
|
787 |
|
788 |
Author(s) |
789 |
~~~~~~~~~ |
790 |
|
791 |
Florent Chuffart |
792 |
|
793 |
R: Filter TemplateFilter outputs |
794 |
|
795 |
|
796 |
Filter TemplateFilter outputs |
797 |
----------------------------- |
798 |
|
799 |
|
800 |
Description |
801 |
~~~~~~~~~~~ |
802 |
|
803 |
This function filters TemplateFilter outputs according, not only |
804 |
genome area observerved properties, but also correlation and overlap |
805 |
threshold. |
806 |
|
807 |
|
808 |
Usage |
809 |
~~~~~ |
810 |
|
811 |
filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, |
812 |
ol_bp = 59, corr_thres = 0.5) |
813 |
|
814 |
|
815 |
Arguments |
816 |
~~~~~~~~~ |
817 |
|
818 |
"tf_outputs" |
819 |
|
820 |
TemplateFilter outputs. |
821 |
|
822 |
"chr" |
823 |
|
824 |
Chromosome observed, here chr is an integer. |
825 |
|
826 |
"x_min" |
827 |
|
828 |
Coordinate of the first bp observed. |
829 |
|
830 |
"x_max" |
831 |
|
832 |
Coordinate of the last bp observed. |
833 |
|
834 |
"nuc_width" |
835 |
|
836 |
Nucleosome width. |
837 |
|
838 |
"ol_bp" |
839 |
|
840 |
Overlap Threshold. |
841 |
|
842 |
"corr_thres" |
843 |
|
844 |
Correlation threshold. |
845 |
|
846 |
|
847 |
Value |
848 |
~~~~~ |
849 |
|
850 |
Returns filtered TemplateFilter Outputs |
851 |
|
852 |
|
853 |
Author(s) |
854 |
~~~~~~~~~ |
855 |
|
856 |
Florent Chuffart |
857 |
|
858 |
R: to flat aggregate_intra_strain_nucs function output |
859 |
|
860 |
|
861 |
to flat aggregate_intra_strain_nucs function output |
862 |
--------------------------------------------------- |
863 |
|
864 |
|
865 |
Description |
866 |
~~~~~~~~~~~ |
867 |
|
868 |
This function builds a dataframe of all clusters obtain from |
869 |
aggregate_intra_strain_nucs function. |
870 |
|
871 |
|
872 |
Usage |
873 |
~~~~~ |
874 |
|
875 |
flat_aggregated_intra_strain_nucs(partial_strain_maps, cur_index) |
876 |
|
877 |
|
878 |
Arguments |
879 |
~~~~~~~~~ |
880 |
|
881 |
"partial_strain_maps" |
882 |
|
883 |
the output of aggregate_intra_strain_nucs function |
884 |
|
885 |
"cur_index" |
886 |
|
887 |
the index of the roi involved |
888 |
|
889 |
|
890 |
Value |
891 |
~~~~~ |
892 |
|
893 |
Returns a dataframe of all clusters obtain from |
894 |
aggregate_intra_strain_nucs function. |
895 |
|
896 |
|
897 |
Author(s) |
898 |
~~~~~~~~~ |
899 |
|
900 |
Florent Chuffart |
901 |
|
902 |
R: flat reads |
903 |
|
904 |
|
905 |
flat reads |
906 |
---------- |
907 |
|
908 |
|
909 |
Description |
910 |
~~~~~~~~~~~ |
911 |
|
912 |
Extract reads coordinates from TempleteFilter input sequence |
913 |
|
914 |
|
915 |
Usage |
916 |
~~~~~ |
917 |
|
918 |
flat_reads(reads, nuc_width) |
919 |
|
920 |
|
921 |
Arguments |
922 |
~~~~~~~~~ |
923 |
|
924 |
"reads" |
925 |
|
926 |
TemplateFilter input reads |
927 |
|
928 |
"nuc_width" |
929 |
|
930 |
Width used to shift F and R reads. |
931 |
|
932 |
|
933 |
Value |
934 |
~~~~~ |
935 |
|
936 |
Returns a list of F reads, R reads and joint/shifted F and R reads. |
937 |
|
938 |
|
939 |
Author(s) |
940 |
~~~~~~~~~ |
941 |
|
942 |
Florent Chuffart |
943 |
|
944 |
R: Retrieve Reads |
945 |
|
946 |
|
947 |
Retrieve Reads |
948 |
-------------- |
949 |
|
950 |
|
951 |
Description |
952 |
~~~~~~~~~~~ |
953 |
|
954 |
Retrieve reads for a given marker, combi, form. |
955 |
|
956 |
|
957 |
Usage |
958 |
~~~~~ |
959 |
|
960 |
get_all_reads(marker, combi, form = "wp", config = NULL) |
961 |
|
962 |
|
963 |
Arguments |
964 |
~~~~~~~~~ |
965 |
|
966 |
"marker" |
967 |
|
968 |
The marker to considere. |
969 |
|
970 |
"combi" |
971 |
|
972 |
The starin combination to considere. |
973 |
|
974 |
"form" |
975 |
|
976 |
The nuc form to considere. |
977 |
|
978 |
"config" |
979 |
|
980 |
GLOBAL config variable |
981 |
|
982 |
|
983 |
Author(s) |
984 |
~~~~~~~~~ |
985 |
|
986 |
Florent Chuffart |
987 |
|
988 |
R: get comp strand |
989 |
|
990 |
|
991 |
get comp strand |
992 |
--------------- |
993 |
|
994 |
|
995 |
Description |
996 |
~~~~~~~~~~~ |
997 |
|
998 |
Compute the complementatry strand. |
999 |
|
1000 |
|
1001 |
Usage |
1002 |
~~~~~ |
1003 |
|
1004 |
get_comp_strand(strand) |
1005 |
|
1006 |
|
1007 |
Arguments |
1008 |
~~~~~~~~~ |
1009 |
|
1010 |
"strand" |
1011 |
|
1012 |
The original strand. |
1013 |
|
1014 |
|
1015 |
Value |
1016 |
~~~~~ |
1017 |
|
1018 |
Returns the complementatry strand. |
1019 |
|
1020 |
|
1021 |
Author(s) |
1022 |
~~~~~~~~~ |
1023 |
|
1024 |
Florent Chuffart |
1025 |
|
1026 |
R: Build the design for deseq |
1027 |
|
1028 |
|
1029 |
Build the design for deseq |
1030 |
-------------------------- |
1031 |
|
1032 |
|
1033 |
Description |
1034 |
~~~~~~~~~~~ |
1035 |
|
1036 |
This function build the design according sample properties. |
1037 |
|
1038 |
|
1039 |
Usage |
1040 |
~~~~~ |
1041 |
|
1042 |
get_design(marker, combi, all_samples) |
1043 |
|
1044 |
|
1045 |
Arguments |
1046 |
~~~~~~~~~ |
1047 |
|
1048 |
"marker" |
1049 |
|
1050 |
The marker to considere. |
1051 |
|
1052 |
"combi" |
1053 |
|
1054 |
The starin combination to considere. |
1055 |
|
1056 |
"all_samples" |
1057 |
|
1058 |
Global list of samples. |
1059 |
|
1060 |
|
1061 |
Author(s) |
1062 |
~~~~~~~~~ |
1063 |
|
1064 |
Florent Chuffart |
1065 |
|
1066 |
R: Compute the fuzzy list for a given strain. |
1067 |
|
1068 |
|
1069 |
Compute the fuzzy list for a given strain. |
1070 |
------------------------------------------ |
1071 |
|
1072 |
|
1073 |
Description |
1074 |
~~~~~~~~~~~ |
1075 |
|
1076 |
This function grabs the nucleosomes detxted by template_filter that |
1077 |
have been rejected bt aggregate_intra_strain_nucs as well positions. |
1078 |
|
1079 |
|
1080 |
Usage |
1081 |
~~~~~ |
1082 |
|
1083 |
get_intra_strain_fuzzy(wp_map, roi, strain, config = NULL) |
1084 |
|
1085 |
|
1086 |
Arguments |
1087 |
~~~~~~~~~ |
1088 |
|
1089 |
"wp_map" |
1090 |
|
1091 |
Well positionned nucleosomes map. |
1092 |
|
1093 |
"roi" |
1094 |
|
1095 |
The region of interest. |
1096 |
|
1097 |
"strain" |
1098 |
|
1099 |
The strain we want to extracvt the fuzzy map. |
1100 |
|
1101 |
"config" |
1102 |
|
1103 |
GLOBAL config variable. |
1104 |
|
1105 |
|
1106 |
Author(s) |
1107 |
~~~~~~~~~ |
1108 |
|
1109 |
Florent Chuffart |
1110 |
|
1111 |
R: Compute the list of SNEPs for a given set of marker, strain... |
1112 |
|
1113 |
|
1114 |
Compute the list of SNEPs for a given set of marker, strain combination and nuc form. |
1115 |
------------------------------------------------------------------------------------- |
1116 |
|
1117 |
|
1118 |
Description |
1119 |
~~~~~~~~~~~ |
1120 |
|
1121 |
This function uses |
1122 |
|
1123 |
|
1124 |
Usage |
1125 |
~~~~~ |
1126 |
|
1127 |
get_sneps(marker, combi, form, all_samples, config = NULL) |
1128 |
|
1129 |
|
1130 |
Arguments |
1131 |
~~~~~~~~~ |
1132 |
|
1133 |
"marker" |
1134 |
|
1135 |
The marker involved. |
1136 |
|
1137 |
"combi" |
1138 |
|
1139 |
The strain combination involved. |
1140 |
|
1141 |
"form" |
1142 |
|
1143 |
the nuc form involved. |
1144 |
|
1145 |
"all_samples" |
1146 |
|
1147 |
Global list of samples. |
1148 |
|
1149 |
"config" |
1150 |
|
1151 |
GLOBAL config variable |
1152 |
|
1153 |
|
1154 |
Author(s) |
1155 |
~~~~~~~~~ |
1156 |
|
1157 |
Florent Chuffart |
1158 |
|
1159 |
|
1160 |
Examples |
1161 |
~~~~~~~~ |
1162 |
|
1163 |
marker = "H3K4me1" |
1164 |
combi = c("BY", "YJM") |
1165 |
form = "wpunr" # "wp" | "unr" | "wpunr" |
1166 |
# foo = get_sneps(marker, combi, form) |
1167 |
# foo = get_sneps("H4K12ac", c("BY", "RM"), "wp") |
1168 |
|
1169 |
R: Compute the unaligned nucleosomal regions (UNRs). |
1170 |
|
1171 |
|
1172 |
Compute the unaligned nucleosomal regions (UNRs). |
1173 |
------------------------------------------------- |
1174 |
|
1175 |
|
1176 |
Description |
1177 |
~~~~~~~~~~~ |
1178 |
|
1179 |
This function aggregate non common wp nucs for each strain and |
1180 |
substract common wp nucs. It does not take care about the size of the |
1181 |
resulting UNR. It will be take into account in the count read part og |
1182 |
the pipeline. |
1183 |
|
1184 |
|
1185 |
Usage |
1186 |
~~~~~ |
1187 |
|
1188 |
get_unrs(combi, roi, cur_index, wp_maps, fuzzy_maps, common_nuc_results, |
1189 |
config = NULL) |
1190 |
|
1191 |
|
1192 |
Arguments |
1193 |
~~~~~~~~~ |
1194 |
|
1195 |
"combi" |
1196 |
|
1197 |
The strain combination to consider. |
1198 |
|
1199 |
"roi" |
1200 |
|
1201 |
The region of interest. |
1202 |
|
1203 |
"cur_index" |
1204 |
|
1205 |
The region of interest index. |
1206 |
|
1207 |
"wp_maps" |
1208 |
|
1209 |
Well positionned nucleosomes maps. |
1210 |
|
1211 |
"fuzzy_maps" |
1212 |
|
1213 |
Fuzzy nucleosomes maps. |
1214 |
|
1215 |
"common_nuc_results" |
1216 |
|
1217 |
Common wp nuc maps |
1218 |
|
1219 |
"config" |
1220 |
|
1221 |
GLOBAL config variable |
1222 |
|
1223 |
|
1224 |
Author(s) |
1225 |
~~~~~~~~~ |
1226 |
|
1227 |
Florent Chuffart |
1228 |
|
1229 |
R: Returns the intersection of 2 list on regions. |
1230 |
|
1231 |
|
1232 |
Returns the intersection of 2 list on regions. |
1233 |
---------------------------------------------- |
1234 |
|
1235 |
|
1236 |
Description |
1237 |
~~~~~~~~~~~ |
1238 |
|
1239 |
This function... |
1240 |
|
1241 |
|
1242 |
Usage |
1243 |
~~~~~ |
1244 |
|
1245 |
intersect_region(region1, region2) |
1246 |
|
1247 |
|
1248 |
Arguments |
1249 |
~~~~~~~~~ |
1250 |
|
1251 |
"region1" |
1252 |
|
1253 |
Original regions. |
1254 |
|
1255 |
"region2" |
1256 |
|
1257 |
Regions to intersect. |
1258 |
|
1259 |
|
1260 |
Author(s) |
1261 |
~~~~~~~~~ |
1262 |
|
1263 |
Florent Chuffart |
1264 |
|
1265 |
R: Likelihood ratio |
1266 |
|
1267 |
|
1268 |
Likelihood ratio |
1269 |
---------------- |
1270 |
|
1271 |
|
1272 |
Description |
1273 |
~~~~~~~~~~~ |
1274 |
|
1275 |
Compute the likelihood log of two set of value from two models Vs. a |
1276 |
unique model. |
1277 |
|
1278 |
|
1279 |
Usage |
1280 |
~~~~~ |
1281 |
|
1282 |
lod_score_vecs(x, y) |
1283 |
|
1284 |
|
1285 |
Arguments |
1286 |
~~~~~~~~~ |
1287 |
|
1288 |
"x" |
1289 |
|
1290 |
First vector. |
1291 |
|
1292 |
"y" |
1293 |
|
1294 |
Second vector. |
1295 |
|
1296 |
|
1297 |
Value |
1298 |
~~~~~ |
1299 |
|
1300 |
Returns the likelihood ratio. |
1301 |
|
1302 |
|
1303 |
Author(s) |
1304 |
~~~~~~~~~ |
1305 |
|
1306 |
Florent Chuffart |
1307 |
|
1308 |
|
1309 |
Examples |
1310 |
~~~~~~~~ |
1311 |
|
1312 |
# LOD score for 2 set of values |
1313 |
mean1=5; sd1=2; card2 = 250 |
1314 |
mean2=6; sd2=3; card1 = 200 |
1315 |
x1 = rnorm(card1, mean1, sd1) |
1316 |
x2 = rnorm(card2, mean2, sd2) |
1317 |
min = floor(min(c(x1,x2))) |
1318 |
max = ceiling(max(c(x1,x2))) |
1319 |
hist(c(x1,x2), xlim=c(min, max), breaks=min:max) |
1320 |
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2) |
1321 |
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3) |
1322 |
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4) |
1323 |
lod_score_vecs(x1,x2) |
1324 |
|
1325 |
R: nm |
1326 |
|
1327 |
|
1328 |
nm |
1329 |
-- |
1330 |
|
1331 |
|
1332 |
Description |
1333 |
~~~~~~~~~~~ |
1334 |
|
1335 |
It provides a set of useful functions allowing to perform quantitative |
1336 |
analysis of nucleosomal epigenome. |
1337 |
|
1338 |
|
1339 |
Details |
1340 |
~~~~~~~ |
1341 |
|
1342 |
+-----------------+-----------------------------------------------------+ |
1343 |
| Package: | nucleominer | |
1344 |
+-----------------+-----------------------------------------------------+ |
1345 |
| Maintainer: | Florent Chuffart <florent.chuffart@ens-lyon.fr> | |
1346 |
+-----------------+-----------------------------------------------------+ |
1347 |
| Author: | Florent Chuffart | |
1348 |
+-----------------+-----------------------------------------------------+ |
1349 |
| Version: | 2.3.40 | |
1350 |
+-----------------+-----------------------------------------------------+ |
1351 |
| License: | CeCILL | |
1352 |
+-----------------+-----------------------------------------------------+ |
1353 |
| Title: | nm | |
1354 |
+-----------------+-----------------------------------------------------+ |
1355 |
| Depends: | seqinr, plotrix, DESeq, cachecache | |
1356 |
+-----------------+-----------------------------------------------------+ |
1357 |
|
1358 |
|
1359 |
Author(s) |
1360 |
~~~~~~~~~ |
1361 |
|
1362 |
Florent Chuffart |
1363 |
|
1364 |
R: Plot the distribution of reads. |
1365 |
|
1366 |
|
1367 |
Plot the distribution of reads. |
1368 |
------------------------------- |
1369 |
|
1370 |
|
1371 |
Description |
1372 |
~~~~~~~~~~~ |
1373 |
|
1374 |
This fuxntion use the deseq nomalization feature to compare |
1375 |
qualitatively the distribution. |
1376 |
|
1377 |
|
1378 |
Usage |
1379 |
~~~~~ |
1380 |
|
1381 |
plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE) |
1382 |
|
1383 |
|
1384 |
Arguments |
1385 |
~~~~~~~~~ |
1386 |
|
1387 |
"strain" |
1388 |
|
1389 |
The strain to considere. |
1390 |
|
1391 |
"marker" |
1392 |
|
1393 |
The marker to considere. |
1394 |
|
1395 |
"res" |
1396 |
|
1397 |
Data |
1398 |
|
1399 |
"all_samples" |
1400 |
|
1401 |
Global list of samples. |
1402 |
|
1403 |
"NEWPLOT" |
1404 |
|
1405 |
If FALSE the curve will be add to the current plot. |
1406 |
|
1407 |
|
1408 |
Author(s) |
1409 |
~~~~~~~~~ |
1410 |
|
1411 |
Florent Chuffart |
1412 |
|
1413 |
R: sign from strand |
1414 |
|
1415 |
|
1416 |
sign from strand |
1417 |
---------------- |
1418 |
|
1419 |
|
1420 |
Description |
1421 |
~~~~~~~~~~~ |
1422 |
|
1423 |
Get the sign of strand |
1424 |
|
1425 |
|
1426 |
Usage |
1427 |
~~~~~ |
1428 |
|
1429 |
sign_from_strand(strands) |
1430 |
|
1431 |
|
1432 |
Arguments |
1433 |
~~~~~~~~~ |
1434 |
|
1435 |
+-----------------+------+ |
1436 |
+-----------------+------+ |
1437 |
|
1438 |
|
1439 |
Value |
1440 |
~~~~~ |
1441 |
|
1442 |
If strand in forward then returns 1 else returns -1 |
1443 |
|
1444 |
|
1445 |
Author(s) |
1446 |
~~~~~~~~~ |
1447 |
|
1448 |
Florent Chuffart |
1449 |
|
1450 |
R: Substract to a list of regions an other list of regions that... |
1451 |
|
1452 |
|
1453 |
Substract to a list of regions an other list of regions that intersect it. |
1454 |
-------------------------------------------------------------------------- |
1455 |
|
1456 |
|
1457 |
Description |
1458 |
~~~~~~~~~~~ |
1459 |
|
1460 |
This fucntion embed a recursive part. It occurs when a substracted |
1461 |
region split an original region on two. |
1462 |
|
1463 |
|
1464 |
Usage |
1465 |
~~~~~ |
1466 |
|
1467 |
substract_region(region1, region2) |
1468 |
|
1469 |
|
1470 |
Arguments |
1471 |
~~~~~~~~~ |
1472 |
|
1473 |
"region1" |
1474 |
|
1475 |
Original regions. |
1476 |
|
1477 |
"region2" |
1478 |
|
1479 |
Regions to substract. |
1480 |
|
1481 |
|
1482 |
Author(s) |
1483 |
~~~~~~~~~ |
1484 |
|
1485 |
Florent Chuffart |
1486 |
|
1487 |
R: Switch a pairlist |
1488 |
|
1489 |
|
1490 |
Switch a pairlist |
1491 |
----------------- |
1492 |
|
1493 |
|
1494 |
Description |
1495 |
~~~~~~~~~~~ |
1496 |
|
1497 |
Take a pairlist key:value and return the switched pairlist value:key. |
1498 |
|
1499 |
|
1500 |
Usage |
1501 |
~~~~~ |
1502 |
|
1503 |
switch_pairlist(l) |
1504 |
|
1505 |
|
1506 |
Arguments |
1507 |
~~~~~~~~~ |
1508 |
|
1509 |
"l" |
1510 |
|
1511 |
The pairlist to switch. |
1512 |
|
1513 |
|
1514 |
Value |
1515 |
~~~~~ |
1516 |
|
1517 |
The switched pairlist. |
1518 |
|
1519 |
|
1520 |
Author(s) |
1521 |
~~~~~~~~~ |
1522 |
|
1523 |
Florent Chuffart |
1524 |
|
1525 |
|
1526 |
Examples |
1527 |
~~~~~~~~ |
1528 |
|
1529 |
l = list(key1 = "value1", key2 = "value2") |
1530 |
print(switch_pairlist(l)) |
1531 |
|
1532 |
R: Translate coords of a genome region. |
1533 |
|
1534 |
|
1535 |
Translate coords of a genome region. |
1536 |
------------------------------------ |
1537 |
|
1538 |
|
1539 |
Description |
1540 |
~~~~~~~~~~~ |
1541 |
|
1542 |
This function is used in the examples, usualy you have to define your |
1543 |
own translation function and overwrite this one using *unlockBinding* |
1544 |
features. Please, refer to the example. |
1545 |
|
1546 |
|
1547 |
Usage |
1548 |
~~~~~ |
1549 |
|
1550 |
translate_cur(roi, strain2, config = NULL, big_cur = NULL) |
1551 |
|
1552 |
|
1553 |
Arguments |
1554 |
~~~~~~~~~ |
1555 |
|
1556 |
"roi" |
1557 |
|
1558 |
Original genome region of interest. |
1559 |
|
1560 |
"strain2" |
1561 |
|
1562 |
The strain in wich you want the genome region of interest. |
1563 |
|
1564 |
"config" |
1565 |
|
1566 |
GLOBAL config variable |
1567 |
|
1568 |
"big_cur" |
1569 |
|
1570 |
A largest region than roi use to filter c2c if it is needed. |
1571 |
|
1572 |
|
1573 |
Author(s) |
1574 |
~~~~~~~~~ |
1575 |
|
1576 |
Florent Chuffart |
1577 |
|
1578 |
|
1579 |
Examples |
1580 |
~~~~~~~~ |
1581 |
|
1582 |
# Define new translate_cur function... |
1583 |
translate_cur = function(roi, strain2, config) { |
1584 |
strain1 = roi$strain_ref |
1585 |
if (strain1 == strain2) { |
1586 |
return(roi) |
1587 |
} else { |
1588 |
stop("Here is my new translate_cur function...") |
1589 |
} |
1590 |
} |
1591 |
# Binding it by uncomment follwing lines. |
1592 |
# unlockBinding("translate_cur", as.environment("package:nm")) |
1593 |
# unlockBinding("translate_cur", getNamespace("nm")) |
1594 |
# assign("translate_cur", translate_cur, "package:nm") |
1595 |
# assign("translate_cur", translate_cur, getNamespace("nm")) |
1596 |
# lockBinding("translate_cur", getNamespace("nm")) |
1597 |
# lockBinding("translate_cur", as.environment("package:nm")) |
1598 |
|
1599 |
R: Translate a list of regions from a strain ref to another. |
1600 |
|
1601 |
|
1602 |
Translate a list of regions from a strain ref to another. |
1603 |
--------------------------------------------------------- |
1604 |
|
1605 |
|
1606 |
Description |
1607 |
~~~~~~~~~~~ |
1608 |
|
1609 |
This function is an eloborated call to translate_cur. |
1610 |
|
1611 |
|
1612 |
Usage |
1613 |
~~~~~ |
1614 |
|
1615 |
translate_regions(regions, combi, cur_index, config = NULL, roi) |
1616 |
|
1617 |
|
1618 |
Arguments |
1619 |
~~~~~~~~~ |
1620 |
|
1621 |
"regions" |
1622 |
|
1623 |
Regions to be translated. |
1624 |
|
1625 |
"combi" |
1626 |
|
1627 |
Combination of strains. |
1628 |
|
1629 |
"cur_index" |
1630 |
|
1631 |
The region of interest index. |
1632 |
|
1633 |
"config" |
1634 |
|
1635 |
GLOBAL config variable |
1636 |
|
1637 |
"roi" |
1638 |
|
1639 |
The region of interest. |
1640 |
|
1641 |
|
1642 |
Author(s) |
1643 |
~~~~~~~~~ |
1644 |
|
1645 |
Florent Chuffart |
1646 |
|
1647 |
R: Aggregate regions that intersect themnselves. |
1648 |
|
1649 |
|
1650 |
Aggregate regions that intersect themnselves. |
1651 |
--------------------------------------------- |
1652 |
|
1653 |
|
1654 |
Description |
1655 |
~~~~~~~~~~~ |
1656 |
|
1657 |
This function is based on sort of lower bounds to detect regions that |
1658 |
intersect. We compare lower bound and upper bound of the porevious |
1659 |
item. This function embed a while loop and break break regions list |
1660 |
become stable. |
1661 |
|
1662 |
|
1663 |
Usage |
1664 |
~~~~~ |
1665 |
|
1666 |
union_regions(regions) |
1667 |
|
1668 |
|
1669 |
Arguments |
1670 |
~~~~~~~~~ |
1671 |
|
1672 |
"regions" |
1673 |
|
1674 |
The Regions to be aggregated |
1675 |
|
1676 |
|
1677 |
Author(s) |
1678 |
~~~~~~~~~ |
1679 |
|
1680 |
Florent Chuffart |
1681 |
|
1682 |
R: Watching analysis of samples |
1683 |
|
1684 |
|
1685 |
Watching analysis of samples |
1686 |
---------------------------- |
1687 |
|
1688 |
|
1689 |
Description |
1690 |
~~~~~~~~~~~ |
1691 |
|
1692 |
This function allows to view analysis for a particuler region of the |
1693 |
genome. |
1694 |
|
1695 |
|
1696 |
Usage |
1697 |
~~~~~ |
1698 |
|
1699 |
watch_samples(replicates, read_length, plot_ref_genome = TRUE, |
1700 |
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, |
1701 |
plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, |
1702 |
plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, |
1703 |
change_col = TRUE, plot_wp_nucs = TRUE, plot_fuzzy_nucs = TRUE, |
1704 |
plot_wp_nuc_model = TRUE, plot_common_nucs = FALSE, plot_common_unrs = FALSE, |
1705 |
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, plot_sample_id = FALSE, |
1706 |
aggregated_intra_strain_nucs = NULL, aligned_inter_strain_nucs = NULL, |
1707 |
height = 10, main = NULL, xlab = NULL, ylab = "#reads (per million reads)", |
1708 |
config = NULL) |
1709 |
|
1710 |
|
1711 |
Arguments |
1712 |
~~~~~~~~~ |
1713 |
|
1714 |
"replicates" |
1715 |
|
1716 |
replicates under the form... |
1717 |
|
1718 |
"read_length" |
1719 |
|
1720 |
length of the reads |
1721 |
|
1722 |
"plot_ref_genome" |
1723 |
|
1724 |
Plot (or not) reference genome. |
1725 |
|
1726 |
"plot_arrow_raw_reads" |
1727 |
|
1728 |
Plot (or not) arrows for raw reads. |
1729 |
|
1730 |
"plot_arrow_nuc_reads" |
1731 |
|
1732 |
Plot (or not) arrows for reads aasiocied to a nucleosome. |
1733 |
|
1734 |
"plot_squared_reads" |
1735 |
|
1736 |
Plot (or not) reads in the square fashion. |
1737 |
|
1738 |
"plot_coverage" |
1739 |
|
1740 |
Plot (or not) reads in the covergae fashion. fashion. |
1741 |
|
1742 |
"plot_gaussian_reads" |
1743 |
|
1744 |
Plot (or not) gaussian model of a F anf R reads. |
1745 |
|
1746 |
"plot_gaussian_unified_reads" |
1747 |
|
1748 |
Plot (or not) gaussian model of a nuc. |
1749 |
|
1750 |
"plot_ellipse_nucs" |
1751 |
|
1752 |
Plot (or not) ellipse for a nuc. |
1753 |
|
1754 |
"change_col" |
1755 |
|
1756 |
Change the color of each nucleosome. |
1757 |
|
1758 |
"plot_wp_nucs" |
1759 |
|
1760 |
Plot (or not) cluster of nucs |
1761 |
|
1762 |
"plot_fuzzy_nucs" |
1763 |
|
1764 |
Plot (or not) cluster of fuzzy |
1765 |
|
1766 |
"plot_wp_nuc_model" |
1767 |
|
1768 |
Plot (or not) gaussian model for a cluster of nucs |
1769 |
|
1770 |
"plot_common_nucs" |
1771 |
|
1772 |
Plot (or not) aligned reads. |
1773 |
|
1774 |
"plot_common_unrs" |
1775 |
|
1776 |
Plot (or not) unaligned nucleosomal refgions (UNRs). |
1777 |
|
1778 |
"plot_wp_nucs_4_nonmnase" |
1779 |
|
1780 |
Plot (or not) clusters for non inputs samples. |
1781 |
|
1782 |
"plot_chain" |
1783 |
|
1784 |
Plot (or not) clusterised nuceosomes between mnase samples. |
1785 |
|
1786 |
"plot_sample_id" |
1787 |
|
1788 |
Plot (or not) the sample id for each sample. |
1789 |
|
1790 |
"aggregated_intra_strain_nucs" |
1791 |
|
1792 |
list of aggregated intra strain nucs. If NULL, it will be computed. |
1793 |
|
1794 |
"aligned_inter_strain_nucs" |
1795 |
|
1796 |
list of aligned inter strain nucs. If NULL, it will be computed. |
1797 |
|
1798 |
"height" |
1799 |
|
1800 |
Number of reads in per million read for each sample, graphical |
1801 |
parametre for the y axis. |
1802 |
|
1803 |
"main" |
1804 |
|
1805 |
main title of the produced plot |
1806 |
|
1807 |
"xlab" |
1808 |
|
1809 |
xlab of the produced plot |
1810 |
|
1811 |
"ylab" |
1812 |
|
1813 |
ylab of the produced plot |
1814 |
|
1815 |
"config" |
1816 |
|
1817 |
GLOBAL config variable |
1818 |
|
1819 |
|
1820 |
Author(s) |
1821 |
~~~~~~~~~ |
1822 |
|
1823 |
Florent Chuffart |