root / doc / sphinx_doc / rref.rst @ 21b8928f
Historique | Voir | Annoter | Télécharger (28,26 ko)
1 |
Arabic to Roman pair list. |
---|---|
2 |
-------------------------- |
3 |
|
4 |
Description |
5 |
~~~~~~~~~~~ |
6 |
|
7 |
Util to convert Arabicto Roman |
8 |
|
9 |
Usage |
10 |
~~~~~ |
11 |
|
12 |
:: |
13 |
|
14 |
ARAB2ROM() |
15 |
|
16 |
Author(s) |
17 |
~~~~~~~~~ |
18 |
|
19 |
Florent Chuffart |
20 |
|
21 |
R: False Discovery Rate |
22 |
|
23 |
False Discovery Rate |
24 |
-------------------- |
25 |
|
26 |
Description |
27 |
~~~~~~~~~~~ |
28 |
|
29 |
From a vector x of independent p-values, extract the cutoff |
30 |
corresponding to the specified FDR. See Benjamini & Hochberg 1995 paper |
31 |
|
32 |
Usage |
33 |
~~~~~ |
34 |
|
35 |
:: |
36 |
|
37 |
FDR(x, FDR) |
38 |
|
39 |
Arguments |
40 |
~~~~~~~~~ |
41 |
|
42 |
``x`` |
43 |
|
44 |
A vector x of independent p-values. |
45 |
|
46 |
``FDR`` |
47 |
|
48 |
The specified FDR. |
49 |
|
50 |
Value |
51 |
~~~~~ |
52 |
|
53 |
Return the the corresponding cutoff. |
54 |
|
55 |
Author(s) |
56 |
~~~~~~~~~ |
57 |
|
58 |
Gael Yvert, Florent Chuffart |
59 |
|
60 |
Examples |
61 |
~~~~~~~~ |
62 |
|
63 |
:: |
64 |
|
65 |
print("example") |
66 |
|
67 |
R: Roman to Arabic pair list. |
68 |
|
69 |
Roman to Arabic pair list. |
70 |
-------------------------- |
71 |
|
72 |
Description |
73 |
~~~~~~~~~~~ |
74 |
|
75 |
Util to convert Roman to Arabic |
76 |
|
77 |
Usage |
78 |
~~~~~ |
79 |
|
80 |
:: |
81 |
|
82 |
ROM2ARAB() |
83 |
|
84 |
Author(s) |
85 |
~~~~~~~~~ |
86 |
|
87 |
Florent Chuffart |
88 |
|
89 |
R: Aggregate replicated sample's nucleosomes. |
90 |
|
91 |
Aggregate replicated sample's nucleosomes. |
92 |
------------------------------------------ |
93 |
|
94 |
Description |
95 |
~~~~~~~~~~~ |
96 |
|
97 |
This function aggregates nucleosome for replicated samples. It uses |
98 |
TemplateFilter ouput of each sample as replicate. Each sample owns a set |
99 |
of nucleosomes computed using TemplateFilter and ordered by the position |
100 |
of their center. Adajacent nucleosomes are compared two by two. |
101 |
Comparison is based on a log likelihood ratio score. The issue of |
102 |
comparison is adjacents nucleosomes merge or separation. Finally the |
103 |
function returns a list of clusters and all computed *lod\_scores*. Each |
104 |
cluster ows an attribute *wp* for "well positionned". This attribute is |
105 |
set as *TRUE* if the cluster is composed of exactly one nucleosomes of |
106 |
each sample. |
107 |
|
108 |
Usage |
109 |
~~~~~ |
110 |
|
111 |
:: |
112 |
|
113 |
aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07) |
114 |
|
115 |
Arguments |
116 |
~~~~~~~~~ |
117 |
|
118 |
``samples`` |
119 |
|
120 |
A list of samples. Each sample is a list like *sample = list(id=..., |
121 |
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
122 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. |
123 |
|
124 |
``lod_thres`` |
125 |
|
126 |
Log likelihood ration threshold. |
127 |
|
128 |
``coord_max`` |
129 |
|
130 |
A too big value to be a coord for a nucleosome lower bound. |
131 |
|
132 |
Value |
133 |
~~~~~ |
134 |
|
135 |
Returns a list of clusterized nucleosomes, and all computed lod scores. |
136 |
|
137 |
Author(s) |
138 |
~~~~~~~~~ |
139 |
|
140 |
Florent Chuffart |
141 |
|
142 |
Examples |
143 |
~~~~~~~~ |
144 |
|
145 |
:: |
146 |
|
147 |
# Dealing with a region of interest |
148 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301)) |
149 |
samples = list() |
150 |
for (i in 1:3) { |
151 |
# Create TF output |
152 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
153 |
outputs = dfadd(NULL,tf_nuc) |
154 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
155 |
# Generate corresponding reads |
156 |
nb_reads = round(runif(1,170,230)) |
157 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
158 |
u_reads = sort(unique(reads)) |
159 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
160 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
161 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
162 |
u_reads = u_reads + shifts |
163 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
164 |
"V2" = u_reads, |
165 |
"V3" = strands, |
166 |
"V4" = counts), stringsAsFactors=FALSE) |
167 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
168 |
} |
169 |
print(aggregate_intra_strain_nucs(samples)) |
170 |
|
171 |
R: Aligns nucleosomes between 2 strains. |
172 |
|
173 |
Aligns nucleosomes between 2 strains. |
174 |
------------------------------------- |
175 |
|
176 |
Description |
177 |
~~~~~~~~~~~ |
178 |
|
179 |
This function aligns nucs between two strains for a given genome region. |
180 |
|
181 |
Usage |
182 |
~~~~~ |
183 |
|
184 |
:: |
185 |
|
186 |
align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, |
187 |
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100, |
188 |
config = NULL, ...) |
189 |
|
190 |
Arguments |
191 |
~~~~~~~~~ |
192 |
|
193 |
``replicates`` |
194 |
|
195 |
Set of replicates, ideally 3 per strain. |
196 |
|
197 |
``wp_nucs_strain_ref1`` |
198 |
|
199 |
List of aggregates nucleosome for strain 1. If it's null this list will |
200 |
be computed. |
201 |
|
202 |
``wp_nucs_strain_ref2`` |
203 |
|
204 |
List of aggregates nucleosome for strain 2. If it's null this list will |
205 |
be computed. |
206 |
|
207 |
``corr_thres`` |
208 |
|
209 |
Correlation threshold. |
210 |
|
211 |
``lod_thres`` |
212 |
|
213 |
LOD cut off. |
214 |
|
215 |
``config`` |
216 |
|
217 |
GLOBAL config variable |
218 |
|
219 |
``...`` |
220 |
|
221 |
A list of parameters that will be passed to |
222 |
*aggregate\_intra\_strain\_nucs* if needed. |
223 |
|
224 |
Value |
225 |
~~~~~ |
226 |
|
227 |
Returns a list of clusterized nucleosomes, and all computed lod scores. |
228 |
|
229 |
Author(s) |
230 |
~~~~~~~~~ |
231 |
|
232 |
Florent Chuffart |
233 |
|
234 |
Examples |
235 |
~~~~~~~~ |
236 |
|
237 |
:: |
238 |
|
239 |
|
240 |
# Define new translate_roi function... |
241 |
translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) { |
242 |
return(roi) |
243 |
} |
244 |
# Binding it by uncomment follwing lines. |
245 |
unlockBinding("translate_roi", as.environment("package:nucleominer")) |
246 |
unlockBinding("translate_roi", getNamespace("nucleominer")) |
247 |
assign("translate_roi", translate_roi, "package:nucleominer") |
248 |
assign("translate_roi", translate_roi, getNamespace("nucleominer")) |
249 |
lockBinding("translate_roi", getNamespace("nucleominer")) |
250 |
lockBinding("translate_roi", as.environment("package:nucleominer")) |
251 |
|
252 |
# Dealing with a region of interest |
253 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1") |
254 |
roi2 = translate_roi(roi, roi$strain_ref1) |
255 |
replicates = list() |
256 |
for (j in 1:2) { |
257 |
samples = list() |
258 |
for (i in 1:3) { |
259 |
# Create TF output |
260 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
261 |
outputs = dfadd(NULL,tf_nuc) |
262 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
263 |
# Generate corresponding reads |
264 |
nb_reads = round(runif(1,170,230)) |
265 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
266 |
u_reads = sort(unique(reads)) |
267 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
268 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
269 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
270 |
u_reads = u_reads + shifts |
271 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
272 |
"V2" = u_reads, |
273 |
"V3" = strands, |
274 |
"V4" = counts), stringsAsFactors=FALSE) |
275 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
276 |
} |
277 |
replicates[[length(replicates) + 1]] = samples |
278 |
} |
279 |
print(align_inter_strain_nucs(replicates)) |
280 |
|
281 |
R: Launch deseq methods. |
282 |
|
283 |
Launch deseq methods. |
284 |
--------------------- |
285 |
|
286 |
Description |
287 |
~~~~~~~~~~~ |
288 |
|
289 |
This function is based on deseq example. It mormalizes data, fit data to |
290 |
GLM model with and without interaction term and compare the two |
291 |
l;=models. |
292 |
|
293 |
Usage |
294 |
~~~~~ |
295 |
|
296 |
:: |
297 |
|
298 |
analyse_design(snep_design, reads) |
299 |
|
300 |
Arguments |
301 |
~~~~~~~~~ |
302 |
|
303 |
``snep_design`` |
304 |
|
305 |
The design to considere. |
306 |
|
307 |
``reads`` |
308 |
|
309 |
The data to considere. |
310 |
|
311 |
Author(s) |
312 |
~~~~~~~~~ |
313 |
|
314 |
Florent Chuffart |
315 |
|
316 |
R: Stage replicates data |
317 |
|
318 |
Stage replicates data |
319 |
--------------------- |
320 |
|
321 |
Description |
322 |
~~~~~~~~~~~ |
323 |
|
324 |
This function loads in memory data corresponding to the given |
325 |
experiments. |
326 |
|
327 |
Usage |
328 |
~~~~~ |
329 |
|
330 |
:: |
331 |
|
332 |
build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE, |
333 |
all_samples, config = NULL) |
334 |
|
335 |
Arguments |
336 |
~~~~~~~~~ |
337 |
|
338 |
``expe`` |
339 |
|
340 |
a list of vector corresponding to vector of replicates. |
341 |
|
342 |
``roi`` |
343 |
|
344 |
the region that we are interested in. |
345 |
|
346 |
``only_fetch`` |
347 |
|
348 |
filter or not inputs. |
349 |
|
350 |
``get_genome`` |
351 |
|
352 |
Load or not corresponding genome. |
353 |
|
354 |
``all_samples`` |
355 |
|
356 |
Global list of samples. |
357 |
|
358 |
``config`` |
359 |
|
360 |
GLOBAL config variable. |
361 |
|
362 |
Author(s) |
363 |
~~~~~~~~~ |
364 |
|
365 |
Florent Chuffart |
366 |
|
367 |
Examples |
368 |
~~~~~~~~ |
369 |
|
370 |
:: |
371 |
|
372 |
# library(rjson) |
373 |
# library(nucleominer) |
374 |
# |
375 |
# # Read config file |
376 |
# json_conf_file = "nucleo_miner_config.json" |
377 |
# config = fromJSON(paste(readLines(json_conf_file), collapse="")) |
378 |
# # Read sample file |
379 |
# all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE) |
380 |
# # here are the sample ids in a list |
381 |
# expes = list(c(1)) |
382 |
# # here is the region that we wnt to see the coverage |
383 |
# cur = list(chr="8", begin=472000, end=474000, strain_ref="BY") |
384 |
# # it displays the corverage |
385 |
# replicates = build_replicates(expes, cur, all_samples=all_samples, config=config) |
386 |
# out = watch_samples(replicates, config$READ_LENGTH, |
387 |
# plot_coverage = TRUE, |
388 |
# plot_squared_reads = FALSE, |
389 |
# plot_ref_genome = FALSE, |
390 |
# plot_arrow_raw_reads = FALSE, |
391 |
# plot_arrow_nuc_reads = FALSE, |
392 |
# plot_gaussian_reads = FALSE, |
393 |
# plot_gaussian_unified_reads = FALSE, |
394 |
# plot_ellipse_nucs = FALSE, |
395 |
# plot_wp_nucs = FALSE, |
396 |
# plot_wp_nuc_model = FALSE, |
397 |
# plot_common_nucs = FALSE, |
398 |
# height = 50) |
399 |
|
400 |
R: reformat an "apply manipulated" list of regions |
401 |
|
402 |
reformat an "apply manipulated" list of regions |
403 |
----------------------------------------------- |
404 |
|
405 |
Description |
406 |
~~~~~~~~~~~ |
407 |
|
408 |
Utils to reformat an "apply manipulated" list of regions |
409 |
|
410 |
Usage |
411 |
~~~~~ |
412 |
|
413 |
:: |
414 |
|
415 |
collapse_regions(regions) |
416 |
|
417 |
Arguments |
418 |
~~~~~~~~~ |
419 |
|
420 |
+---------------+----+ |
421 |
| ``regions`` | | |
422 |
+---------------+----+ |
423 |
|
424 |
Author(s) |
425 |
~~~~~~~~~ |
426 |
|
427 |
Florent Chuffart |
428 |
|
429 |
R: Compute Common Uninterrupted Regions (CUR) |
430 |
|
431 |
Compute Common Uninterrupted Regions (CUR) |
432 |
------------------------------------------ |
433 |
|
434 |
Description |
435 |
~~~~~~~~~~~ |
436 |
|
437 |
CURs are regions that can be aligned between the genomes |
438 |
|
439 |
Usage |
440 |
~~~~~ |
441 |
|
442 |
:: |
443 |
|
444 |
compute_inter_all_strain_curs(diff_allowed = 10, min_cur_width = 200, |
445 |
config = NULL, plot = FALSE) |
446 |
|
447 |
Arguments |
448 |
~~~~~~~~~ |
449 |
|
450 |
``diff_allowed`` |
451 |
|
452 |
the maximum indel width allowe din a CUR |
453 |
|
454 |
``min_cur_width`` |
455 |
|
456 |
The minimum width of a CUR |
457 |
|
458 |
``config`` |
459 |
|
460 |
GLOBAL config variable |
461 |
|
462 |
``plot`` |
463 |
|
464 |
Plot CURs or not |
465 |
|
466 |
Author(s) |
467 |
~~~~~~~~~ |
468 |
|
469 |
Florent Chuffart |
470 |
|
471 |
R: Crop bound of regions according to region of interest bound |
472 |
|
473 |
Crop bound of regions according to region of interest bound |
474 |
----------------------------------------------------------- |
475 |
|
476 |
Description |
477 |
~~~~~~~~~~~ |
478 |
|
479 |
The fucntion is no more necessary since we remove "big\_roi" bug in |
480 |
translate\_roi function. |
481 |
|
482 |
Usage |
483 |
~~~~~ |
484 |
|
485 |
:: |
486 |
|
487 |
crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL) |
488 |
|
489 |
Arguments |
490 |
~~~~~~~~~ |
491 |
|
492 |
``tmp_fuzzy_nucs`` |
493 |
|
494 |
the regiuons to be croped. |
495 |
|
496 |
``roi`` |
497 |
|
498 |
The region of interest. |
499 |
|
500 |
``strain`` |
501 |
|
502 |
The strain to consider. |
503 |
|
504 |
``config`` |
505 |
|
506 |
GLOBAL config variable |
507 |
|
508 |
Author(s) |
509 |
~~~~~~~~~ |
510 |
|
511 |
Florent Chuffart |
512 |
|
513 |
R: Adding list to a dataframe. |
514 |
|
515 |
Adding list to a dataframe. |
516 |
--------------------------- |
517 |
|
518 |
Description |
519 |
~~~~~~~~~~~ |
520 |
|
521 |
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. Return |
522 |
the dataframe *df*. |
523 |
|
524 |
Usage |
525 |
~~~~~ |
526 |
|
527 |
:: |
528 |
|
529 |
dfadd(df, l) |
530 |
|
531 |
Arguments |
532 |
~~~~~~~~~ |
533 |
|
534 |
``df`` |
535 |
|
536 |
A dataframe |
537 |
|
538 |
``l`` |
539 |
|
540 |
A list |
541 |
|
542 |
Value |
543 |
~~~~~ |
544 |
|
545 |
Return the dataframe *df*. |
546 |
|
547 |
Author(s) |
548 |
~~~~~~~~~ |
549 |
|
550 |
Florent Chuffart |
551 |
|
552 |
Examples |
553 |
~~~~~~~~ |
554 |
|
555 |
:: |
556 |
|
557 |
## Here dataframe is NULL |
558 |
print(df) |
559 |
df = NULL |
560 |
|
561 |
# Initialize df |
562 |
df = dfadd(df, list(key1 = "value1", key2 = "value2")) |
563 |
print(df) |
564 |
|
565 |
# Adding elements to df |
566 |
df = dfadd(df, list(key1 = "value1'", key2 = "value2'")) |
567 |
print(df) |
568 |
|
569 |
R: Extract wp nucs from nuc map. |
570 |
|
571 |
Extract wp nucs from nuc map. |
572 |
----------------------------- |
573 |
|
574 |
Description |
575 |
~~~~~~~~~~~ |
576 |
|
577 |
Function based on common wp nuc index and roi\_index. |
578 |
|
579 |
Usage |
580 |
~~~~~ |
581 |
|
582 |
:: |
583 |
|
584 |
extract_wp(strain_maps, roi_index, strain, tmp_common_nucs) |
585 |
|
586 |
Arguments |
587 |
~~~~~~~~~ |
588 |
|
589 |
``strain_maps`` |
590 |
|
591 |
Nuc maps. |
592 |
|
593 |
``roi_index`` |
594 |
|
595 |
The region of interest index. |
596 |
|
597 |
``strain`` |
598 |
|
599 |
The strain to consider. |
600 |
|
601 |
``tmp_common_nucs`` |
602 |
|
603 |
the list of wp nucs. |
604 |
|
605 |
Author(s) |
606 |
~~~~~~~~~ |
607 |
|
608 |
Florent Chuffart |
609 |
|
610 |
R: Prefetch data |
611 |
|
612 |
Prefetch data |
613 |
------------- |
614 |
|
615 |
Description |
616 |
~~~~~~~~~~~ |
617 |
|
618 |
Fetch and filter inputs and outpouts per region of interest. Organize it |
619 |
per replicates. |
620 |
|
621 |
Usage |
622 |
~~~~~ |
623 |
|
624 |
:: |
625 |
|
626 |
fetch_mnase_replicates(strain, roi, all_samples, config = NULL, |
627 |
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE) |
628 |
|
629 |
Arguments |
630 |
~~~~~~~~~ |
631 |
|
632 |
``strain`` |
633 |
|
634 |
The strain we want mnase replicatesList of replicates. Each replicates |
635 |
is a vector of sample ids. |
636 |
|
637 |
``roi`` |
638 |
|
639 |
Region of interest. |
640 |
|
641 |
``all_samples`` |
642 |
|
643 |
Global list of samples. |
644 |
|
645 |
``config`` |
646 |
|
647 |
GLOBAL config variable |
648 |
|
649 |
``only_fetch`` |
650 |
|
651 |
If TRUE, only fetch and not filtering. It is used tio load sample files |
652 |
into memory before forking. |
653 |
|
654 |
``get_genome`` |
655 |
|
656 |
If TRUE, load corresponding genome sequence. |
657 |
|
658 |
``get_ouputs`` |
659 |
|
660 |
If TRUE, get also ouput corresponding TF output files. |
661 |
|
662 |
Author(s) |
663 |
~~~~~~~~~ |
664 |
|
665 |
Florent Chuffart |
666 |
|
667 |
R: Filter TemplateFilter inputs |
668 |
|
669 |
Filter TemplateFilter inputs |
670 |
---------------------------- |
671 |
|
672 |
Description |
673 |
~~~~~~~~~~~ |
674 |
|
675 |
This function filters TemplateFilter inputs according genome area |
676 |
observed properties. It takes into account reads that are at the |
677 |
frontier of this area and the strand of these reads. |
678 |
|
679 |
Usage |
680 |
~~~~~ |
681 |
|
682 |
:: |
683 |
|
684 |
filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, |
685 |
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE) |
686 |
|
687 |
Arguments |
688 |
~~~~~~~~~ |
689 |
|
690 |
``inputs`` |
691 |
|
692 |
TF inputs to be filtered. |
693 |
|
694 |
``chr`` |
695 |
|
696 |
Chromosome observed, here chr is an integer. |
697 |
|
698 |
``x_min`` |
699 |
|
700 |
Coordinate of the first bp observed. |
701 |
|
702 |
``x_max`` |
703 |
|
704 |
Coordinate of the last bp observed. |
705 |
|
706 |
``nuc_width`` |
707 |
|
708 |
Nucleosome width. |
709 |
|
710 |
``only_f`` |
711 |
|
712 |
Filter only F reads. |
713 |
|
714 |
``only_r`` |
715 |
|
716 |
Filter only R reads. |
717 |
|
718 |
``filter_for_coverage`` |
719 |
|
720 |
Does it filter for plot coverage? |
721 |
|
722 |
Value |
723 |
~~~~~ |
724 |
|
725 |
Returns filtred inputs. |
726 |
|
727 |
Author(s) |
728 |
~~~~~~~~~ |
729 |
|
730 |
Florent Chuffart |
731 |
|
732 |
R: Filter TemplateFilter outputs |
733 |
|
734 |
Filter TemplateFilter outputs |
735 |
----------------------------- |
736 |
|
737 |
Description |
738 |
~~~~~~~~~~~ |
739 |
|
740 |
This function filters TemplateFilter outputs according, not only genome |
741 |
area observerved properties, but also correlation and overlap threshold. |
742 |
|
743 |
Usage |
744 |
~~~~~ |
745 |
|
746 |
:: |
747 |
|
748 |
filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, |
749 |
ol_bp = 59, corr_thres = 0.5) |
750 |
|
751 |
Arguments |
752 |
~~~~~~~~~ |
753 |
|
754 |
``tf_outputs`` |
755 |
|
756 |
TemplateFilter outputs. |
757 |
|
758 |
``chr`` |
759 |
|
760 |
Chromosome observed, here chr is an integer. |
761 |
|
762 |
``x_min`` |
763 |
|
764 |
Coordinate of the first bp observed. |
765 |
|
766 |
``x_max`` |
767 |
|
768 |
Coordinate of the last bp observed. |
769 |
|
770 |
``nuc_width`` |
771 |
|
772 |
Nucleosome width. |
773 |
|
774 |
``ol_bp`` |
775 |
|
776 |
Overlap Threshold. |
777 |
|
778 |
``corr_thres`` |
779 |
|
780 |
Correlation threshold. |
781 |
|
782 |
Value |
783 |
~~~~~ |
784 |
|
785 |
Returns filtered TemplateFilter Outputs |
786 |
|
787 |
Author(s) |
788 |
~~~~~~~~~ |
789 |
|
790 |
Florent Chuffart |
791 |
|
792 |
R: to flat aggregate\_intra\_strain\_nucs function output |
793 |
|
794 |
to flat aggregate\_intra\_strain\_nucs function output |
795 |
------------------------------------------------------ |
796 |
|
797 |
Description |
798 |
~~~~~~~~~~~ |
799 |
|
800 |
This function builds a dataframe of all clusters obtain from |
801 |
aggregate\_intra\_strain\_nucs function. |
802 |
|
803 |
Usage |
804 |
~~~~~ |
805 |
|
806 |
:: |
807 |
|
808 |
flat_aggregated_intra_strain_nucs(partial_strain_maps, roi_index) |
809 |
|
810 |
Arguments |
811 |
~~~~~~~~~ |
812 |
|
813 |
``partial_strain_maps`` |
814 |
|
815 |
the output of aggregate\_intra\_strain\_nucs function |
816 |
|
817 |
``roi_index`` |
818 |
|
819 |
the index of the roi involved |
820 |
|
821 |
Value |
822 |
~~~~~ |
823 |
|
824 |
Returns a dataframe of all clusters obtain from |
825 |
aggregate\_intra\_strain\_nucs function. |
826 |
|
827 |
Author(s) |
828 |
~~~~~~~~~ |
829 |
|
830 |
Florent Chuffart |
831 |
|
832 |
R: flat reads |
833 |
|
834 |
flat reads |
835 |
---------- |
836 |
|
837 |
Description |
838 |
~~~~~~~~~~~ |
839 |
|
840 |
Extract reads coordinates from TempleteFilter input sequence |
841 |
|
842 |
Usage |
843 |
~~~~~ |
844 |
|
845 |
:: |
846 |
|
847 |
flat_reads(reads, nuc_width) |
848 |
|
849 |
Arguments |
850 |
~~~~~~~~~ |
851 |
|
852 |
``reads`` |
853 |
|
854 |
TemplateFilter input reads |
855 |
|
856 |
``nuc_width`` |
857 |
|
858 |
Width used to shift F and R reads. |
859 |
|
860 |
Value |
861 |
~~~~~ |
862 |
|
863 |
Returns a list of F reads, R reads and joint/shifted F and R reads. |
864 |
|
865 |
Author(s) |
866 |
~~~~~~~~~ |
867 |
|
868 |
Florent Chuffart |
869 |
|
870 |
R: Retrieve Reads |
871 |
|
872 |
Retrieve Reads |
873 |
-------------- |
874 |
|
875 |
Description |
876 |
~~~~~~~~~~~ |
877 |
|
878 |
Retrieve reads for a given marker, combi, form. |
879 |
|
880 |
Usage |
881 |
~~~~~ |
882 |
|
883 |
:: |
884 |
|
885 |
get_all_reads(marker, combi, form = "wp", config = NULL) |
886 |
|
887 |
Arguments |
888 |
~~~~~~~~~ |
889 |
|
890 |
``marker`` |
891 |
|
892 |
The marker to considere. |
893 |
|
894 |
``combi`` |
895 |
|
896 |
The starin combination to considere. |
897 |
|
898 |
``form`` |
899 |
|
900 |
The nuc form to considere. |
901 |
|
902 |
``config`` |
903 |
|
904 |
GLOBAL config variable |
905 |
|
906 |
Author(s) |
907 |
~~~~~~~~~ |
908 |
|
909 |
Florent Chuffart |
910 |
|
911 |
R: get comp strand |
912 |
|
913 |
get comp strand |
914 |
--------------- |
915 |
|
916 |
Description |
917 |
~~~~~~~~~~~ |
918 |
|
919 |
Compute the complementatry strand. |
920 |
|
921 |
Usage |
922 |
~~~~~ |
923 |
|
924 |
:: |
925 |
|
926 |
get_comp_strand(strand) |
927 |
|
928 |
Arguments |
929 |
~~~~~~~~~ |
930 |
|
931 |
``strand`` |
932 |
|
933 |
The original strand. |
934 |
|
935 |
Value |
936 |
~~~~~ |
937 |
|
938 |
Returns the complementatry strand. |
939 |
|
940 |
Author(s) |
941 |
~~~~~~~~~ |
942 |
|
943 |
Florent Chuffart |
944 |
|
945 |
R: Build the design for deseq |
946 |
|
947 |
Build the design for deseq |
948 |
-------------------------- |
949 |
|
950 |
Description |
951 |
~~~~~~~~~~~ |
952 |
|
953 |
This function build the design according sample properties. |
954 |
|
955 |
Usage |
956 |
~~~~~ |
957 |
|
958 |
:: |
959 |
|
960 |
get_design(marker, combi, all_samples) |
961 |
|
962 |
Arguments |
963 |
~~~~~~~~~ |
964 |
|
965 |
``marker`` |
966 |
|
967 |
The marker to considere. |
968 |
|
969 |
``combi`` |
970 |
|
971 |
The starin combination to considere. |
972 |
|
973 |
``all_samples`` |
974 |
|
975 |
Global list of samples. |
976 |
|
977 |
Author(s) |
978 |
~~~~~~~~~ |
979 |
|
980 |
Florent Chuffart |
981 |
|
982 |
R: Compute the fuzzy nucs. |
983 |
|
984 |
Compute the fuzzy nucs. |
985 |
----------------------- |
986 |
|
987 |
Description |
988 |
~~~~~~~~~~~ |
989 |
|
990 |
This function aggregate non common wp nucs for each strain and substract |
991 |
common wp nucs. It does not take care about the size of the resulting |
992 |
fuzzy regions. It will be take into account in the count read part og |
993 |
the pipeline. |
994 |
|
995 |
Usage |
996 |
~~~~~ |
997 |
|
998 |
:: |
999 |
|
1000 |
get_fuzzy(combi, roi, roi_index, strain_maps, common_nuc_results, |
1001 |
config = NULL) |
1002 |
|
1003 |
Arguments |
1004 |
~~~~~~~~~ |
1005 |
|
1006 |
``combi`` |
1007 |
|
1008 |
The strain combination to consider. |
1009 |
|
1010 |
``roi`` |
1011 |
|
1012 |
The region of interest. |
1013 |
|
1014 |
``roi_index`` |
1015 |
|
1016 |
The region of interest index. |
1017 |
|
1018 |
``strain_maps`` |
1019 |
|
1020 |
Nuc maps. |
1021 |
|
1022 |
``common_nuc_results`` |
1023 |
|
1024 |
Common wp nuc maps |
1025 |
|
1026 |
``config`` |
1027 |
|
1028 |
GLOBAL config variable |
1029 |
|
1030 |
Author(s) |
1031 |
~~~~~~~~~ |
1032 |
|
1033 |
Florent Chuffart |
1034 |
|
1035 |
R: Compute the list of SNEPs for a given set of marker, strain... |
1036 |
|
1037 |
Compute the list of SNEPs for a given set of marker, strain combination and nuc form. |
1038 |
------------------------------------------------------------------------------------- |
1039 |
|
1040 |
Description |
1041 |
~~~~~~~~~~~ |
1042 |
|
1043 |
This function uses |
1044 |
|
1045 |
Usage |
1046 |
~~~~~ |
1047 |
|
1048 |
:: |
1049 |
|
1050 |
get_sneps(marker, combi, form, all_samples, config = NULL) |
1051 |
|
1052 |
Arguments |
1053 |
~~~~~~~~~ |
1054 |
|
1055 |
``marker`` |
1056 |
|
1057 |
The marker involved. |
1058 |
|
1059 |
``combi`` |
1060 |
|
1061 |
The strain combination involved. |
1062 |
|
1063 |
``form`` |
1064 |
|
1065 |
the nuc form involved. |
1066 |
|
1067 |
``all_samples`` |
1068 |
|
1069 |
Global list of samples. |
1070 |
|
1071 |
``config`` |
1072 |
|
1073 |
GLOBAL config variable |
1074 |
|
1075 |
Author(s) |
1076 |
~~~~~~~~~ |
1077 |
|
1078 |
Florent Chuffart |
1079 |
|
1080 |
Examples |
1081 |
~~~~~~~~ |
1082 |
|
1083 |
:: |
1084 |
|
1085 |
marker = "H3K4me1" |
1086 |
combi = c("BY", "YJM") |
1087 |
form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy" |
1088 |
# foo = get_sneps(marker, combi, form) |
1089 |
# foo = get_sneps("H4K12ac", c("BY", "RM"), "wp") |
1090 |
|
1091 |
R: Likelihood ratio |
1092 |
|
1093 |
Likelihood ratio |
1094 |
---------------- |
1095 |
|
1096 |
Description |
1097 |
~~~~~~~~~~~ |
1098 |
|
1099 |
Compute the likelihood log of two set of value from two models Vs. a |
1100 |
unique model. |
1101 |
|
1102 |
Usage |
1103 |
~~~~~ |
1104 |
|
1105 |
:: |
1106 |
|
1107 |
lod_score_vecs(x, y) |
1108 |
|
1109 |
Arguments |
1110 |
~~~~~~~~~ |
1111 |
|
1112 |
``x`` |
1113 |
|
1114 |
First vector. |
1115 |
|
1116 |
``y`` |
1117 |
|
1118 |
Second vector. |
1119 |
|
1120 |
Value |
1121 |
~~~~~ |
1122 |
|
1123 |
Returns the likelihood ratio. |
1124 |
|
1125 |
Author(s) |
1126 |
~~~~~~~~~ |
1127 |
|
1128 |
Florent Chuffart |
1129 |
|
1130 |
Examples |
1131 |
~~~~~~~~ |
1132 |
|
1133 |
:: |
1134 |
|
1135 |
# LOD score for 2 set of values |
1136 |
mean1=5; sd1=2; card2 = 250 |
1137 |
mean2=6; sd2=3; card1 = 200 |
1138 |
x1 = rnorm(card1, mean1, sd1) |
1139 |
x2 = rnorm(card2, mean2, sd2) |
1140 |
min = floor(min(c(x1,x2))) |
1141 |
max = ceiling(max(c(x1,x2))) |
1142 |
hist(c(x1,x2), xlim=c(min, max), breaks=min:max) |
1143 |
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2) |
1144 |
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3) |
1145 |
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4) |
1146 |
lod_score_vecs(x1,x2) |
1147 |
|
1148 |
R: nm |
1149 |
|
1150 |
nm |
1151 |
-- |
1152 |
|
1153 |
Description |
1154 |
~~~~~~~~~~~ |
1155 |
|
1156 |
It provides a set of useful functions allowing to perform quantitative |
1157 |
analysis of nucleosomal epigenome. |
1158 |
|
1159 |
Details |
1160 |
~~~~~~~ |
1161 |
|
1162 |
+---------------+---------------------------------------------------+ |
1163 |
| Package: | nucleominer | |
1164 |
+---------------+---------------------------------------------------+ |
1165 |
| Maintainer: | Florent Chuffart <florent.chuffart@ens-lyon.fr> | |
1166 |
+---------------+---------------------------------------------------+ |
1167 |
| Author: | Florent Chuffart | |
1168 |
+---------------+---------------------------------------------------+ |
1169 |
| Version: | 2.3.28 | |
1170 |
+---------------+---------------------------------------------------+ |
1171 |
| License: | CeCILL | |
1172 |
+---------------+---------------------------------------------------+ |
1173 |
| Title: | nm | |
1174 |
+---------------+---------------------------------------------------+ |
1175 |
| Depends: | seqinr, plotrix, DESeq, cachecache | |
1176 |
+---------------+---------------------------------------------------+ |
1177 |
|
1178 |
Author(s) |
1179 |
~~~~~~~~~ |
1180 |
|
1181 |
Florent Chuffart |
1182 |
|
1183 |
R: Performaing ANOVAs |
1184 |
|
1185 |
Performaing ANOVAs |
1186 |
------------------ |
1187 |
|
1188 |
Description |
1189 |
~~~~~~~~~~~ |
1190 |
|
1191 |
Counts reads and Performs ANOVAS for each common nucleosomes involved. |
1192 |
|
1193 |
Usage |
1194 |
~~~~~ |
1195 |
|
1196 |
:: |
1197 |
|
1198 |
perform_anovas(replicates, aligned_inter_strain_nucs, inputs_name = "Mnase_Seq", |
1199 |
plot_anova_boxes = FALSE) |
1200 |
|
1201 |
Arguments |
1202 |
~~~~~~~~~ |
1203 |
|
1204 |
``replicates`` |
1205 |
|
1206 |
Set of replicates, each replicate is a list of samples (ideally 3). Each |
1207 |
sample is a list like *sample = list(id=..., marker=..., strain=..., |
1208 |
roi=..., inputs=..., outputs=...)* with *roi = list(name=..., begin=..., |
1209 |
end=..., chr=..., genome=...)*. In the *perform\_anovas* contexte, we |
1210 |
need 4 replicates (4 \* (3 samples)): 2 strains \* (1 marker + 1 input |
1211 |
(Mnase\_Seq)). |
1212 |
|
1213 |
``aligned_inter_strain_nucs`` |
1214 |
|
1215 |
List of common nucleosomes. |
1216 |
|
1217 |
``inputs_name`` |
1218 |
|
1219 |
Name of the input. |
1220 |
|
1221 |
``plot_anova_boxes`` |
1222 |
|
1223 |
Plot (or not) boxplot for each nuc. |
1224 |
|
1225 |
Value |
1226 |
~~~~~ |
1227 |
|
1228 |
Returns ANOVA results and comunted reads. |
1229 |
|
1230 |
Author(s) |
1231 |
~~~~~~~~~ |
1232 |
|
1233 |
Florent Chuffart |
1234 |
|
1235 |
R: Plot the distribution of reads. |
1236 |
|
1237 |
Plot the distribution of reads. |
1238 |
------------------------------- |
1239 |
|
1240 |
Description |
1241 |
~~~~~~~~~~~ |
1242 |
|
1243 |
This fuxntion use the deseq nomalization feature to compare |
1244 |
qualitatively the distribution. |
1245 |
|
1246 |
Usage |
1247 |
~~~~~ |
1248 |
|
1249 |
:: |
1250 |
|
1251 |
plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE) |
1252 |
|
1253 |
Arguments |
1254 |
~~~~~~~~~ |
1255 |
|
1256 |
``strain`` |
1257 |
|
1258 |
The strain to considere. |
1259 |
|
1260 |
``marker`` |
1261 |
|
1262 |
The marker to considere. |
1263 |
|
1264 |
``res`` |
1265 |
|
1266 |
Data |
1267 |
|
1268 |
``all_samples`` |
1269 |
|
1270 |
Global list of samples. |
1271 |
|
1272 |
``NEWPLOT`` |
1273 |
|
1274 |
If FALSE the curve will be add to the current plot. |
1275 |
|
1276 |
Author(s) |
1277 |
~~~~~~~~~ |
1278 |
|
1279 |
Florent Chuffart |
1280 |
|
1281 |
R: Remove wp nucs from common nucs list. |
1282 |
|
1283 |
Remove wp nucs from common nucs list. |
1284 |
------------------------------------- |
1285 |
|
1286 |
Description |
1287 |
~~~~~~~~~~~ |
1288 |
|
1289 |
It is based on common wp nucs index on nucs and region. |
1290 |
|
1291 |
Usage |
1292 |
~~~~~ |
1293 |
|
1294 |
:: |
1295 |
|
1296 |
remove_aligned_wp(strain_maps, roi_index, tmp_common_nucs, strain) |
1297 |
|
1298 |
Arguments |
1299 |
~~~~~~~~~ |
1300 |
|
1301 |
``strain_maps`` |
1302 |
|
1303 |
Nuc maps. |
1304 |
|
1305 |
``roi_index`` |
1306 |
|
1307 |
The region of interest index. |
1308 |
|
1309 |
``tmp_common_nucs`` |
1310 |
|
1311 |
the list of wp nucs. |
1312 |
|
1313 |
``strain`` |
1314 |
|
1315 |
The strain to consider. |
1316 |
|
1317 |
Author(s) |
1318 |
~~~~~~~~~ |
1319 |
|
1320 |
Florent Chuffart |
1321 |
|
1322 |
R: sign from strand |
1323 |
|
1324 |
sign from strand |
1325 |
---------------- |
1326 |
|
1327 |
Description |
1328 |
~~~~~~~~~~~ |
1329 |
|
1330 |
Get the sign of strand |
1331 |
|
1332 |
Usage |
1333 |
~~~~~ |
1334 |
|
1335 |
:: |
1336 |
|
1337 |
sign_from_strand(strands) |
1338 |
|
1339 |
Arguments |
1340 |
~~~~~~~~~ |
1341 |
|
1342 |
+---------------+----+ |
1343 |
| ``strands`` | | |
1344 |
+---------------+----+ |
1345 |
|
1346 |
Value |
1347 |
~~~~~ |
1348 |
|
1349 |
If strand in forward then returns 1 else returns -1 |
1350 |
|
1351 |
Author(s) |
1352 |
~~~~~~~~~ |
1353 |
|
1354 |
Florent Chuffart |
1355 |
|
1356 |
R: Substract to a list of regions an other list of regions that... |
1357 |
|
1358 |
Substract to a list of regions an other list of regions that intersect it. |
1359 |
-------------------------------------------------------------------------- |
1360 |
|
1361 |
Description |
1362 |
~~~~~~~~~~~ |
1363 |
|
1364 |
This fucntion embed a recursive part. It occurs when a substracted |
1365 |
region split an original region on two. |
1366 |
|
1367 |
Usage |
1368 |
~~~~~ |
1369 |
|
1370 |
:: |
1371 |
|
1372 |
substract_region(region1, region2) |
1373 |
|
1374 |
Arguments |
1375 |
~~~~~~~~~ |
1376 |
|
1377 |
``region1`` |
1378 |
|
1379 |
Original regions. |
1380 |
|
1381 |
``region2`` |
1382 |
|
1383 |
Regions to substract. |
1384 |
|
1385 |
Author(s) |
1386 |
~~~~~~~~~ |
1387 |
|
1388 |
Florent Chuffart |
1389 |
|
1390 |
R: Switch a pairlist |
1391 |
|
1392 |
Switch a pairlist |
1393 |
----------------- |
1394 |
|
1395 |
Description |
1396 |
~~~~~~~~~~~ |
1397 |
|
1398 |
Take a pairlist key:value and return the switched pairlist value:key. |
1399 |
|
1400 |
Usage |
1401 |
~~~~~ |
1402 |
|
1403 |
:: |
1404 |
|
1405 |
switch_pairlist(l) |
1406 |
|
1407 |
Arguments |
1408 |
~~~~~~~~~ |
1409 |
|
1410 |
``l`` |
1411 |
|
1412 |
The pairlist to switch. |
1413 |
|
1414 |
Value |
1415 |
~~~~~ |
1416 |
|
1417 |
The switched pairlist. |
1418 |
|
1419 |
Author(s) |
1420 |
~~~~~~~~~ |
1421 |
|
1422 |
Florent Chuffart |
1423 |
|
1424 |
Examples |
1425 |
~~~~~~~~ |
1426 |
|
1427 |
:: |
1428 |
|
1429 |
l = list(key1 = "value1", key2 = "value2") |
1430 |
print(switch_pairlist(l)) |
1431 |
|
1432 |
R: Translate a list of regions from a strain ref to another. |
1433 |
|
1434 |
Translate a list of regions from a strain ref to another. |
1435 |
--------------------------------------------------------- |
1436 |
|
1437 |
Description |
1438 |
~~~~~~~~~~~ |
1439 |
|
1440 |
This function is an eloborated call to translate\_roi. |
1441 |
|
1442 |
Usage |
1443 |
~~~~~ |
1444 |
|
1445 |
:: |
1446 |
|
1447 |
translate_regions(regions, combi, roi_index, config = NULL, roi) |
1448 |
|
1449 |
Arguments |
1450 |
~~~~~~~~~ |
1451 |
|
1452 |
``regions`` |
1453 |
|
1454 |
Regions to be translated. |
1455 |
|
1456 |
``combi`` |
1457 |
|
1458 |
Combination of strains. |
1459 |
|
1460 |
``roi_index`` |
1461 |
|
1462 |
The region of interest index. |
1463 |
|
1464 |
``config`` |
1465 |
|
1466 |
GLOBAL config variable |
1467 |
|
1468 |
``roi`` |
1469 |
|
1470 |
The region of interest. |
1471 |
|
1472 |
Author(s) |
1473 |
~~~~~~~~~ |
1474 |
|
1475 |
Florent Chuffart |
1476 |
|
1477 |
R: Translate coords of a genome region. |
1478 |
|
1479 |
Translate coords of a genome region. |
1480 |
------------------------------------ |
1481 |
|
1482 |
Description |
1483 |
~~~~~~~~~~~ |
1484 |
|
1485 |
This function is used in the examples, usualy you have to define your |
1486 |
own translation function and overwrite this one using *unlockBinding* |
1487 |
features. Please, refer to the example. |
1488 |
|
1489 |
Usage |
1490 |
~~~~~ |
1491 |
|
1492 |
:: |
1493 |
|
1494 |
translate_roi(roi, strain2, config = NULL, big_roi = NULL) |
1495 |
|
1496 |
Arguments |
1497 |
~~~~~~~~~ |
1498 |
|
1499 |
``roi`` |
1500 |
|
1501 |
Original genome region of interest. |
1502 |
|
1503 |
``strain2`` |
1504 |
|
1505 |
The strain in wich you want the genome region of interest. |
1506 |
|
1507 |
``config`` |
1508 |
|
1509 |
GLOBAL config variable |
1510 |
|
1511 |
``big_roi`` |
1512 |
|
1513 |
A largest region than roi use to filter c2c if it is needed. |
1514 |
|
1515 |
Author(s) |
1516 |
~~~~~~~~~ |
1517 |
|
1518 |
Florent Chuffart |
1519 |
|
1520 |
Examples |
1521 |
~~~~~~~~ |
1522 |
|
1523 |
:: |
1524 |
|
1525 |
# Define new translate_roi function... |
1526 |
translate_roi = function(roi, strain2, config) { |
1527 |
strain1 = roi$strain_ref |
1528 |
if (strain1 == strain2) { |
1529 |
return(roi) |
1530 |
} else { |
1531 |
stop("Here is my new translate_roi function...") |
1532 |
} |
1533 |
} |
1534 |
# Binding it by uncomment follwing lines. |
1535 |
# unlockBinding("translate_roi", as.environment("package:nm")) |
1536 |
# unlockBinding("translate_roi", getNamespace("nm")) |
1537 |
# assign("translate_roi", translate_roi, "package:nm") |
1538 |
# assign("translate_roi", translate_roi, getNamespace("nm")) |
1539 |
# lockBinding("translate_roi", getNamespace("nm")) |
1540 |
# lockBinding("translate_roi", as.environment("package:nm")) |
1541 |
|
1542 |
R: Aggregate regions that intersect themnselves. |
1543 |
|
1544 |
Aggregate regions that intersect themnselves. |
1545 |
--------------------------------------------- |
1546 |
|
1547 |
Description |
1548 |
~~~~~~~~~~~ |
1549 |
|
1550 |
This function is based on sort of lower bounds to detect regions that |
1551 |
intersect. We compare lower bound and upper bound of the porevious item. |
1552 |
This function embed a while loop and break break regions list become |
1553 |
stable. |
1554 |
|
1555 |
Usage |
1556 |
~~~~~ |
1557 |
|
1558 |
:: |
1559 |
|
1560 |
union_regions(regions) |
1561 |
|
1562 |
Arguments |
1563 |
~~~~~~~~~ |
1564 |
|
1565 |
``regions`` |
1566 |
|
1567 |
The Regions to be aggregated |
1568 |
|
1569 |
Author(s) |
1570 |
~~~~~~~~~ |
1571 |
|
1572 |
Florent Chuffart |
1573 |
|
1574 |
R: Watching analysis of samples |
1575 |
|
1576 |
Watching analysis of samples |
1577 |
---------------------------- |
1578 |
|
1579 |
Description |
1580 |
~~~~~~~~~~~ |
1581 |
|
1582 |
This function allows to view analysis for a particuler region of the |
1583 |
genome. |
1584 |
|
1585 |
Usage |
1586 |
~~~~~ |
1587 |
|
1588 |
:: |
1589 |
|
1590 |
watch_samples(replicates, read_length, plot_ref_genome = TRUE, |
1591 |
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, |
1592 |
plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, |
1593 |
plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, |
1594 |
change_col = TRUE, plot_wp_nucs = TRUE, plot_wp_nuc_model = TRUE, |
1595 |
plot_common_nucs = TRUE, plot_anovas = FALSE, plot_anova_boxes = FALSE, |
1596 |
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, aggregated_intra_strain_nucs = NULL, |
1597 |
aligned_inter_strain_nucs = NULL, height = 10, config = NULL) |
1598 |
|
1599 |
Arguments |
1600 |
~~~~~~~~~ |
1601 |
|
1602 |
``replicates`` |
1603 |
|
1604 |
replicates under the form... |
1605 |
|
1606 |
``read_length`` |
1607 |
|
1608 |
length of the reads |
1609 |
|
1610 |
``plot_ref_genome`` |
1611 |
|
1612 |
Plot (or not) reference genome. |
1613 |
|
1614 |
``plot_arrow_raw_reads`` |
1615 |
|
1616 |
Plot (or not) arrows for raw reads. |
1617 |
|
1618 |
``plot_arrow_nuc_reads`` |
1619 |
|
1620 |
Plot (or not) arrows for reads aasiocied to a nucleosome. |
1621 |
|
1622 |
``plot_squared_reads`` |
1623 |
|
1624 |
Plot (or not) reads in the square fashion. |
1625 |
|
1626 |
``plot_coverage`` |
1627 |
|
1628 |
Plot (or not) reads in the covergae fashion. fashion. |
1629 |
|
1630 |
``plot_gaussian_reads`` |
1631 |
|
1632 |
Plot (or not) gaussian model of a F anf R reads. |
1633 |
|
1634 |
``plot_gaussian_unified_reads`` |
1635 |
|
1636 |
Plot (or not) gaussian model of a nuc. |
1637 |
|
1638 |
``plot_ellipse_nucs`` |
1639 |
|
1640 |
Plot (or not) ellipse for a nuc. |
1641 |
|
1642 |
``change_col`` |
1643 |
|
1644 |
Change the color of each nucleosome. |
1645 |
|
1646 |
``plot_wp_nucs`` |
1647 |
|
1648 |
Plot (or not) cluster of nucs |
1649 |
|
1650 |
``plot_wp_nuc_model`` |
1651 |
|
1652 |
Plot (or not) gaussian model for a cluster of nucs |
1653 |
|
1654 |
``plot_common_nucs`` |
1655 |
|
1656 |
Plot (or not) aligned reads. |
1657 |
|
1658 |
``plot_anovas`` |
1659 |
|
1660 |
Plot (or not) scatter for each nuc. |
1661 |
|
1662 |
``plot_anova_boxes`` |
1663 |
|
1664 |
Plot (or not) boxplot for each nuc. |
1665 |
|
1666 |
``plot_wp_nucs_4_nonmnase`` |
1667 |
|
1668 |
Plot (or not) clusters for non inputs samples. |
1669 |
|
1670 |
``plot_chain`` |
1671 |
|
1672 |
Plot (or not) clusterised nuceosomes between mnase samples. |
1673 |
|
1674 |
``aggregated_intra_strain_nucs`` |
1675 |
|
1676 |
list of aggregated intra strain nucs. If NULL, it will be computed. |
1677 |
|
1678 |
``aligned_inter_strain_nucs`` |
1679 |
|
1680 |
list of aligned inter strain nucs. If NULL, it will be computed. |
1681 |
|
1682 |
``height`` |
1683 |
|
1684 |
Number of reads in per million read for each sample, graphical parametre |
1685 |
for the y axis. |
1686 |
|
1687 |
``config`` |
1688 |
|
1689 |
GLOBAL config variable |
1690 |
|
1691 |
Author(s) |
1692 |
~~~~~~~~~ |
1693 |
|
1694 |
Florent Chuffart |