root / doc / sphinx_doc / build / text / ref.txt @ 21b8928f
Historique | Voir | Annoter | Télécharger (27,86 ko)
1 |
|
---|---|
2 |
References |
3 |
********** |
4 |
|
5 |
|
6 |
Python Reference |
7 |
================ |
8 |
|
9 |
|
10 |
R Reference |
11 |
=========== |
12 |
|
13 |
|
14 |
Arabic to Roman pair list. |
15 |
-------------------------- |
16 |
|
17 |
|
18 |
Description |
19 |
~~~~~~~~~~~ |
20 |
|
21 |
Util to convert Arabicto Roman |
22 |
|
23 |
|
24 |
Usage |
25 |
~~~~~ |
26 |
|
27 |
ARAB2ROM() |
28 |
|
29 |
|
30 |
Author(s) |
31 |
~~~~~~~~~ |
32 |
|
33 |
Florent Chuffart |
34 |
|
35 |
R: False Discovery Rate |
36 |
|
37 |
|
38 |
False Discovery Rate |
39 |
-------------------- |
40 |
|
41 |
|
42 |
Description |
43 |
~~~~~~~~~~~ |
44 |
|
45 |
From a vector x of independent p-values, extract the cutoff |
46 |
corresponding to the specified FDR. See Benjamini & Hochberg 1995 |
47 |
paper |
48 |
|
49 |
|
50 |
Usage |
51 |
~~~~~ |
52 |
|
53 |
FDR(x, FDR) |
54 |
|
55 |
|
56 |
Arguments |
57 |
~~~~~~~~~ |
58 |
|
59 |
"x" |
60 |
|
61 |
A vector x of independent p-values. |
62 |
|
63 |
"FDR" |
64 |
|
65 |
The specified FDR. |
66 |
|
67 |
|
68 |
Value |
69 |
~~~~~ |
70 |
|
71 |
Return the the corresponding cutoff. |
72 |
|
73 |
|
74 |
Author(s) |
75 |
~~~~~~~~~ |
76 |
|
77 |
Gael Yvert, Florent Chuffart |
78 |
|
79 |
|
80 |
Examples |
81 |
~~~~~~~~ |
82 |
|
83 |
print("example") |
84 |
|
85 |
R: Roman to Arabic pair list. |
86 |
|
87 |
|
88 |
Roman to Arabic pair list. |
89 |
-------------------------- |
90 |
|
91 |
|
92 |
Description |
93 |
~~~~~~~~~~~ |
94 |
|
95 |
Util to convert Roman to Arabic |
96 |
|
97 |
|
98 |
Usage |
99 |
~~~~~ |
100 |
|
101 |
ROM2ARAB() |
102 |
|
103 |
|
104 |
Author(s) |
105 |
~~~~~~~~~ |
106 |
|
107 |
Florent Chuffart |
108 |
|
109 |
R: Aggregate replicated sample's nucleosomes. |
110 |
|
111 |
|
112 |
Aggregate replicated sample's nucleosomes. |
113 |
------------------------------------------ |
114 |
|
115 |
|
116 |
Description |
117 |
~~~~~~~~~~~ |
118 |
|
119 |
This function aggregates nucleosome for replicated samples. It uses |
120 |
TemplateFilter ouput of each sample as replicate. Each sample owns a |
121 |
set of nucleosomes computed using TemplateFilter and ordered by the |
122 |
position of their center. Adajacent nucleosomes are compared two by |
123 |
two. Comparison is based on a log likelihood ratio score. The issue of |
124 |
comparison is adjacents nucleosomes merge or separation. Finally the |
125 |
function returns a list of clusters and all computed *lod_scores*. |
126 |
Each cluster ows an attribute *wp* for "well positionned". This |
127 |
attribute is set as *TRUE* if the cluster is composed of exactly one |
128 |
nucleosomes of each sample. |
129 |
|
130 |
|
131 |
Usage |
132 |
~~~~~ |
133 |
|
134 |
aggregate_intra_strain_nucs(samples, lod_thres = 20, coord_max = 2e+07) |
135 |
|
136 |
|
137 |
Arguments |
138 |
~~~~~~~~~ |
139 |
|
140 |
"samples" |
141 |
|
142 |
A list of samples. Each sample is a list like *sample = list(id=..., |
143 |
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
144 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. |
145 |
|
146 |
"lod_thres" |
147 |
|
148 |
Log likelihood ration threshold. |
149 |
|
150 |
"coord_max" |
151 |
|
152 |
A too big value to be a coord for a nucleosome lower bound. |
153 |
|
154 |
|
155 |
Value |
156 |
~~~~~ |
157 |
|
158 |
Returns a list of clusterized nucleosomes, and all computed lod |
159 |
scores. |
160 |
|
161 |
|
162 |
Author(s) |
163 |
~~~~~~~~~ |
164 |
|
165 |
Florent Chuffart |
166 |
|
167 |
|
168 |
Examples |
169 |
~~~~~~~~ |
170 |
|
171 |
# Dealing with a region of interest |
172 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301)) |
173 |
samples = list() |
174 |
for (i in 1:3) { |
175 |
# Create TF output |
176 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
177 |
outputs = dfadd(NULL,tf_nuc) |
178 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
179 |
# Generate corresponding reads |
180 |
nb_reads = round(runif(1,170,230)) |
181 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
182 |
u_reads = sort(unique(reads)) |
183 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
184 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
185 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
186 |
u_reads = u_reads + shifts |
187 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
188 |
"V2" = u_reads, |
189 |
"V3" = strands, |
190 |
"V4" = counts), stringsAsFactors=FALSE) |
191 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
192 |
} |
193 |
print(aggregate_intra_strain_nucs(samples)) |
194 |
|
195 |
R: Aligns nucleosomes between 2 strains. |
196 |
|
197 |
|
198 |
Aligns nucleosomes between 2 strains. |
199 |
------------------------------------- |
200 |
|
201 |
|
202 |
Description |
203 |
~~~~~~~~~~~ |
204 |
|
205 |
This function aligns nucs between two strains for a given genome |
206 |
region. |
207 |
|
208 |
|
209 |
Usage |
210 |
~~~~~ |
211 |
|
212 |
align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, |
213 |
wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = 100, |
214 |
config = NULL, ...) |
215 |
|
216 |
|
217 |
Arguments |
218 |
~~~~~~~~~ |
219 |
|
220 |
"replicates" |
221 |
|
222 |
Set of replicates, ideally 3 per strain. |
223 |
|
224 |
"wp_nucs_strain_ref1" |
225 |
|
226 |
List of aggregates nucleosome for strain 1. If it's null this list |
227 |
will be computed. |
228 |
|
229 |
"wp_nucs_strain_ref2" |
230 |
|
231 |
List of aggregates nucleosome for strain 2. If it's null this list |
232 |
will be computed. |
233 |
|
234 |
"corr_thres" |
235 |
|
236 |
Correlation threshold. |
237 |
|
238 |
"lod_thres" |
239 |
|
240 |
LOD cut off. |
241 |
|
242 |
"config" |
243 |
|
244 |
GLOBAL config variable |
245 |
|
246 |
"..." |
247 |
|
248 |
A list of parameters that will be passed to |
249 |
*aggregate_intra_strain_nucs* if needed. |
250 |
|
251 |
|
252 |
Value |
253 |
~~~~~ |
254 |
|
255 |
Returns a list of clusterized nucleosomes, and all computed lod |
256 |
scores. |
257 |
|
258 |
|
259 |
Author(s) |
260 |
~~~~~~~~~ |
261 |
|
262 |
Florent Chuffart |
263 |
|
264 |
|
265 |
Examples |
266 |
~~~~~~~~ |
267 |
|
268 |
# Define new translate_roi function... |
269 |
translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) { |
270 |
return(roi) |
271 |
} |
272 |
# Binding it by uncomment follwing lines. |
273 |
unlockBinding("translate_roi", as.environment("package:nucleominer")) |
274 |
unlockBinding("translate_roi", getNamespace("nucleominer")) |
275 |
assign("translate_roi", translate_roi, "package:nucleominer") |
276 |
assign("translate_roi", translate_roi, getNamespace("nucleominer")) |
277 |
lockBinding("translate_roi", getNamespace("nucleominer")) |
278 |
lockBinding("translate_roi", as.environment("package:nucleominer")) |
279 |
|
280 |
# Dealing with a region of interest |
281 |
roi =list(name="example", begin=1000, end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1") |
282 |
roi2 = translate_roi(roi, roi$strain_ref1) |
283 |
replicates = list() |
284 |
for (j in 1:2) { |
285 |
samples = list() |
286 |
for (i in 1:3) { |
287 |
# Create TF output |
288 |
tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9) |
289 |
outputs = dfadd(NULL,tf_nuc) |
290 |
outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end) |
291 |
# Generate corresponding reads |
292 |
nb_reads = round(runif(1,170,230)) |
293 |
reads = round(rnorm(nb_reads, tf_nuc$center,20)) |
294 |
u_reads = sort(unique(reads)) |
295 |
strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2)))) |
296 |
counts = apply(t(u_reads), 2, function(r) { sum(reads == r)}) |
297 |
shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)}) |
298 |
u_reads = u_reads + shifts |
299 |
inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), |
300 |
"V2" = u_reads, |
301 |
"V3" = strands, |
302 |
"V4" = counts), stringsAsFactors=FALSE) |
303 |
samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs) |
304 |
} |
305 |
replicates[[length(replicates) + 1]] = samples |
306 |
} |
307 |
print(align_inter_strain_nucs(replicates)) |
308 |
|
309 |
R: Launch deseq methods. |
310 |
|
311 |
|
312 |
Launch deseq methods. |
313 |
--------------------- |
314 |
|
315 |
|
316 |
Description |
317 |
~~~~~~~~~~~ |
318 |
|
319 |
This function is based on deseq example. It mormalizes data, fit data |
320 |
to GLM model with and without interaction term and compare the two |
321 |
l;=models. |
322 |
|
323 |
|
324 |
Usage |
325 |
~~~~~ |
326 |
|
327 |
analyse_design(snep_design, reads) |
328 |
|
329 |
|
330 |
Arguments |
331 |
~~~~~~~~~ |
332 |
|
333 |
"snep_design" |
334 |
|
335 |
The design to considere. |
336 |
|
337 |
"reads" |
338 |
|
339 |
The data to considere. |
340 |
|
341 |
|
342 |
Author(s) |
343 |
~~~~~~~~~ |
344 |
|
345 |
Florent Chuffart |
346 |
|
347 |
R: Stage replicates data |
348 |
|
349 |
|
350 |
Stage replicates data |
351 |
--------------------- |
352 |
|
353 |
|
354 |
Description |
355 |
~~~~~~~~~~~ |
356 |
|
357 |
This function loads in memory data corresponding to the given |
358 |
experiments. |
359 |
|
360 |
|
361 |
Usage |
362 |
~~~~~ |
363 |
|
364 |
build_replicates(expe, roi, only_fetch = FALSE, get_genome = FALSE, |
365 |
all_samples, config = NULL) |
366 |
|
367 |
|
368 |
Arguments |
369 |
~~~~~~~~~ |
370 |
|
371 |
"expe" |
372 |
|
373 |
a list of vector corresponding to vector of replicates. |
374 |
|
375 |
"roi" |
376 |
|
377 |
the region that we are interested in. |
378 |
|
379 |
"only_fetch" |
380 |
|
381 |
filter or not inputs. |
382 |
|
383 |
"get_genome" |
384 |
|
385 |
Load or not corresponding genome. |
386 |
|
387 |
"all_samples" |
388 |
|
389 |
Global list of samples. |
390 |
|
391 |
"config" |
392 |
|
393 |
GLOBAL config variable. |
394 |
|
395 |
|
396 |
Author(s) |
397 |
~~~~~~~~~ |
398 |
|
399 |
Florent Chuffart |
400 |
|
401 |
|
402 |
Examples |
403 |
~~~~~~~~ |
404 |
|
405 |
# library(rjson) |
406 |
# library(nucleominer) |
407 |
# |
408 |
# # Read config file |
409 |
# json_conf_file = "nucleo_miner_config.json" |
410 |
# config = fromJSON(paste(readLines(json_conf_file), collapse="")) |
411 |
# # Read sample file |
412 |
# all_samples = get_content(config$CSV_SAMPLE_FILE, "cvs", sep=";", head=TRUE, stringsAsFactors=FALSE) |
413 |
# # here are the sample ids in a list |
414 |
# expes = list(c(1)) |
415 |
# # here is the region that we wnt to see the coverage |
416 |
# cur = list(chr="8", begin=472000, end=474000, strain_ref="BY") |
417 |
# # it displays the corverage |
418 |
# replicates = build_replicates(expes, cur, all_samples=all_samples, config=config) |
419 |
# out = watch_samples(replicates, config$READ_LENGTH, |
420 |
# plot_coverage = TRUE, |
421 |
# plot_squared_reads = FALSE, |
422 |
# plot_ref_genome = FALSE, |
423 |
# plot_arrow_raw_reads = FALSE, |
424 |
# plot_arrow_nuc_reads = FALSE, |
425 |
# plot_gaussian_reads = FALSE, |
426 |
# plot_gaussian_unified_reads = FALSE, |
427 |
# plot_ellipse_nucs = FALSE, |
428 |
# plot_wp_nucs = FALSE, |
429 |
# plot_wp_nuc_model = FALSE, |
430 |
# plot_common_nucs = FALSE, |
431 |
# height = 50) |
432 |
|
433 |
R: reformat an "apply manipulated" list of regions |
434 |
|
435 |
|
436 |
reformat an "apply manipulated" list of regions |
437 |
----------------------------------------------- |
438 |
|
439 |
|
440 |
Description |
441 |
~~~~~~~~~~~ |
442 |
|
443 |
Utils to reformat an "apply manipulated" list of regions |
444 |
|
445 |
|
446 |
Usage |
447 |
~~~~~ |
448 |
|
449 |
collapse_regions(regions) |
450 |
|
451 |
|
452 |
Arguments |
453 |
~~~~~~~~~ |
454 |
|
455 |
+-----------------+------+ |
456 |
+-----------------+------+ |
457 |
|
458 |
|
459 |
Author(s) |
460 |
~~~~~~~~~ |
461 |
|
462 |
Florent Chuffart |
463 |
|
464 |
R: Compute Common Uninterrupted Regions (CUR) |
465 |
|
466 |
|
467 |
Compute Common Uninterrupted Regions (CUR) |
468 |
------------------------------------------ |
469 |
|
470 |
|
471 |
Description |
472 |
~~~~~~~~~~~ |
473 |
|
474 |
CURs are regions that can be aligned between the genomes |
475 |
|
476 |
|
477 |
Usage |
478 |
~~~~~ |
479 |
|
480 |
compute_inter_all_strain_curs(diff_allowed = 10, min_cur_width = 200, |
481 |
config = NULL, plot = FALSE) |
482 |
|
483 |
|
484 |
Arguments |
485 |
~~~~~~~~~ |
486 |
|
487 |
"diff_allowed" |
488 |
|
489 |
the maximum indel width allowe din a CUR |
490 |
|
491 |
"min_cur_width" |
492 |
|
493 |
The minimum width of a CUR |
494 |
|
495 |
"config" |
496 |
|
497 |
GLOBAL config variable |
498 |
|
499 |
"plot" |
500 |
|
501 |
Plot CURs or not |
502 |
|
503 |
|
504 |
Author(s) |
505 |
~~~~~~~~~ |
506 |
|
507 |
Florent Chuffart |
508 |
|
509 |
R: Crop bound of regions according to region of interest bound |
510 |
|
511 |
|
512 |
Crop bound of regions according to region of interest bound |
513 |
----------------------------------------------------------- |
514 |
|
515 |
|
516 |
Description |
517 |
~~~~~~~~~~~ |
518 |
|
519 |
The fucntion is no more necessary since we remove "big_roi" bug in |
520 |
translate_roi function. |
521 |
|
522 |
|
523 |
Usage |
524 |
~~~~~ |
525 |
|
526 |
crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL) |
527 |
|
528 |
|
529 |
Arguments |
530 |
~~~~~~~~~ |
531 |
|
532 |
"tmp_fuzzy_nucs" |
533 |
|
534 |
the regiuons to be croped. |
535 |
|
536 |
"roi" |
537 |
|
538 |
The region of interest. |
539 |
|
540 |
"strain" |
541 |
|
542 |
The strain to consider. |
543 |
|
544 |
"config" |
545 |
|
546 |
GLOBAL config variable |
547 |
|
548 |
|
549 |
Author(s) |
550 |
~~~~~~~~~ |
551 |
|
552 |
Florent Chuffart |
553 |
|
554 |
R: Adding list to a dataframe. |
555 |
|
556 |
|
557 |
Adding list to a dataframe. |
558 |
--------------------------- |
559 |
|
560 |
|
561 |
Description |
562 |
~~~~~~~~~~~ |
563 |
|
564 |
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. |
565 |
Return the dataframe *df*. |
566 |
|
567 |
|
568 |
Usage |
569 |
~~~~~ |
570 |
|
571 |
dfadd(df, l) |
572 |
|
573 |
|
574 |
Arguments |
575 |
~~~~~~~~~ |
576 |
|
577 |
"df" |
578 |
|
579 |
A dataframe |
580 |
|
581 |
"l" |
582 |
|
583 |
A list |
584 |
|
585 |
|
586 |
Value |
587 |
~~~~~ |
588 |
|
589 |
Return the dataframe *df*. |
590 |
|
591 |
|
592 |
Author(s) |
593 |
~~~~~~~~~ |
594 |
|
595 |
Florent Chuffart |
596 |
|
597 |
|
598 |
Examples |
599 |
~~~~~~~~ |
600 |
|
601 |
## Here dataframe is NULL |
602 |
print(df) |
603 |
df = NULL |
604 |
|
605 |
# Initialize df |
606 |
df = dfadd(df, list(key1 = "value1", key2 = "value2")) |
607 |
print(df) |
608 |
|
609 |
# Adding elements to df |
610 |
df = dfadd(df, list(key1 = "value1'", key2 = "value2'")) |
611 |
print(df) |
612 |
|
613 |
R: Extract wp nucs from nuc map. |
614 |
|
615 |
|
616 |
Extract wp nucs from nuc map. |
617 |
----------------------------- |
618 |
|
619 |
|
620 |
Description |
621 |
~~~~~~~~~~~ |
622 |
|
623 |
Function based on common wp nuc index and roi_index. |
624 |
|
625 |
|
626 |
Usage |
627 |
~~~~~ |
628 |
|
629 |
extract_wp(strain_maps, roi_index, strain, tmp_common_nucs) |
630 |
|
631 |
|
632 |
Arguments |
633 |
~~~~~~~~~ |
634 |
|
635 |
"strain_maps" |
636 |
|
637 |
Nuc maps. |
638 |
|
639 |
"roi_index" |
640 |
|
641 |
The region of interest index. |
642 |
|
643 |
"strain" |
644 |
|
645 |
The strain to consider. |
646 |
|
647 |
"tmp_common_nucs" |
648 |
|
649 |
the list of wp nucs. |
650 |
|
651 |
|
652 |
Author(s) |
653 |
~~~~~~~~~ |
654 |
|
655 |
Florent Chuffart |
656 |
|
657 |
R: Prefetch data |
658 |
|
659 |
|
660 |
Prefetch data |
661 |
------------- |
662 |
|
663 |
|
664 |
Description |
665 |
~~~~~~~~~~~ |
666 |
|
667 |
Fetch and filter inputs and outpouts per region of interest. Organize |
668 |
it per replicates. |
669 |
|
670 |
|
671 |
Usage |
672 |
~~~~~ |
673 |
|
674 |
fetch_mnase_replicates(strain, roi, all_samples, config = NULL, |
675 |
only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE) |
676 |
|
677 |
|
678 |
Arguments |
679 |
~~~~~~~~~ |
680 |
|
681 |
"strain" |
682 |
|
683 |
The strain we want mnase replicatesList of replicates. Each replicates |
684 |
is a vector of sample ids. |
685 |
|
686 |
"roi" |
687 |
|
688 |
Region of interest. |
689 |
|
690 |
"all_samples" |
691 |
|
692 |
Global list of samples. |
693 |
|
694 |
"config" |
695 |
|
696 |
GLOBAL config variable |
697 |
|
698 |
"only_fetch" |
699 |
|
700 |
If TRUE, only fetch and not filtering. It is used tio load sample |
701 |
files into memory before forking. |
702 |
|
703 |
"get_genome" |
704 |
|
705 |
If TRUE, load corresponding genome sequence. |
706 |
|
707 |
"get_ouputs" |
708 |
|
709 |
If TRUE, get also ouput corresponding TF output files. |
710 |
|
711 |
|
712 |
Author(s) |
713 |
~~~~~~~~~ |
714 |
|
715 |
Florent Chuffart |
716 |
|
717 |
R: Filter TemplateFilter inputs |
718 |
|
719 |
|
720 |
Filter TemplateFilter inputs |
721 |
---------------------------- |
722 |
|
723 |
|
724 |
Description |
725 |
~~~~~~~~~~~ |
726 |
|
727 |
This function filters TemplateFilter inputs according genome area |
728 |
observed properties. It takes into account reads that are at the |
729 |
frontier of this area and the strand of these reads. |
730 |
|
731 |
|
732 |
Usage |
733 |
~~~~~ |
734 |
|
735 |
filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, |
736 |
only_f = FALSE, only_r = FALSE, filter_for_coverage = FALSE) |
737 |
|
738 |
|
739 |
Arguments |
740 |
~~~~~~~~~ |
741 |
|
742 |
"inputs" |
743 |
|
744 |
TF inputs to be filtered. |
745 |
|
746 |
"chr" |
747 |
|
748 |
Chromosome observed, here chr is an integer. |
749 |
|
750 |
"x_min" |
751 |
|
752 |
Coordinate of the first bp observed. |
753 |
|
754 |
"x_max" |
755 |
|
756 |
Coordinate of the last bp observed. |
757 |
|
758 |
"nuc_width" |
759 |
|
760 |
Nucleosome width. |
761 |
|
762 |
"only_f" |
763 |
|
764 |
Filter only F reads. |
765 |
|
766 |
"only_r" |
767 |
|
768 |
Filter only R reads. |
769 |
|
770 |
"filter_for_coverage" |
771 |
|
772 |
Does it filter for plot coverage? |
773 |
|
774 |
|
775 |
Value |
776 |
~~~~~ |
777 |
|
778 |
Returns filtred inputs. |
779 |
|
780 |
|
781 |
Author(s) |
782 |
~~~~~~~~~ |
783 |
|
784 |
Florent Chuffart |
785 |
|
786 |
R: Filter TemplateFilter outputs |
787 |
|
788 |
|
789 |
Filter TemplateFilter outputs |
790 |
----------------------------- |
791 |
|
792 |
|
793 |
Description |
794 |
~~~~~~~~~~~ |
795 |
|
796 |
This function filters TemplateFilter outputs according, not only |
797 |
genome area observerved properties, but also correlation and overlap |
798 |
threshold. |
799 |
|
800 |
|
801 |
Usage |
802 |
~~~~~ |
803 |
|
804 |
filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, |
805 |
ol_bp = 59, corr_thres = 0.5) |
806 |
|
807 |
|
808 |
Arguments |
809 |
~~~~~~~~~ |
810 |
|
811 |
"tf_outputs" |
812 |
|
813 |
TemplateFilter outputs. |
814 |
|
815 |
"chr" |
816 |
|
817 |
Chromosome observed, here chr is an integer. |
818 |
|
819 |
"x_min" |
820 |
|
821 |
Coordinate of the first bp observed. |
822 |
|
823 |
"x_max" |
824 |
|
825 |
Coordinate of the last bp observed. |
826 |
|
827 |
"nuc_width" |
828 |
|
829 |
Nucleosome width. |
830 |
|
831 |
"ol_bp" |
832 |
|
833 |
Overlap Threshold. |
834 |
|
835 |
"corr_thres" |
836 |
|
837 |
Correlation threshold. |
838 |
|
839 |
|
840 |
Value |
841 |
~~~~~ |
842 |
|
843 |
Returns filtered TemplateFilter Outputs |
844 |
|
845 |
|
846 |
Author(s) |
847 |
~~~~~~~~~ |
848 |
|
849 |
Florent Chuffart |
850 |
|
851 |
R: to flat aggregate_intra_strain_nucs function output |
852 |
|
853 |
|
854 |
to flat aggregate_intra_strain_nucs function output |
855 |
--------------------------------------------------- |
856 |
|
857 |
|
858 |
Description |
859 |
~~~~~~~~~~~ |
860 |
|
861 |
This function builds a dataframe of all clusters obtain from |
862 |
aggregate_intra_strain_nucs function. |
863 |
|
864 |
|
865 |
Usage |
866 |
~~~~~ |
867 |
|
868 |
flat_aggregated_intra_strain_nucs(partial_strain_maps, roi_index) |
869 |
|
870 |
|
871 |
Arguments |
872 |
~~~~~~~~~ |
873 |
|
874 |
"partial_strain_maps" |
875 |
|
876 |
the output of aggregate_intra_strain_nucs function |
877 |
|
878 |
"roi_index" |
879 |
|
880 |
the index of the roi involved |
881 |
|
882 |
|
883 |
Value |
884 |
~~~~~ |
885 |
|
886 |
Returns a dataframe of all clusters obtain from |
887 |
aggregate_intra_strain_nucs function. |
888 |
|
889 |
|
890 |
Author(s) |
891 |
~~~~~~~~~ |
892 |
|
893 |
Florent Chuffart |
894 |
|
895 |
R: flat reads |
896 |
|
897 |
|
898 |
flat reads |
899 |
---------- |
900 |
|
901 |
|
902 |
Description |
903 |
~~~~~~~~~~~ |
904 |
|
905 |
Extract reads coordinates from TempleteFilter input sequence |
906 |
|
907 |
|
908 |
Usage |
909 |
~~~~~ |
910 |
|
911 |
flat_reads(reads, nuc_width) |
912 |
|
913 |
|
914 |
Arguments |
915 |
~~~~~~~~~ |
916 |
|
917 |
"reads" |
918 |
|
919 |
TemplateFilter input reads |
920 |
|
921 |
"nuc_width" |
922 |
|
923 |
Width used to shift F and R reads. |
924 |
|
925 |
|
926 |
Value |
927 |
~~~~~ |
928 |
|
929 |
Returns a list of F reads, R reads and joint/shifted F and R reads. |
930 |
|
931 |
|
932 |
Author(s) |
933 |
~~~~~~~~~ |
934 |
|
935 |
Florent Chuffart |
936 |
|
937 |
R: Retrieve Reads |
938 |
|
939 |
|
940 |
Retrieve Reads |
941 |
-------------- |
942 |
|
943 |
|
944 |
Description |
945 |
~~~~~~~~~~~ |
946 |
|
947 |
Retrieve reads for a given marker, combi, form. |
948 |
|
949 |
|
950 |
Usage |
951 |
~~~~~ |
952 |
|
953 |
get_all_reads(marker, combi, form = "wp", config = NULL) |
954 |
|
955 |
|
956 |
Arguments |
957 |
~~~~~~~~~ |
958 |
|
959 |
"marker" |
960 |
|
961 |
The marker to considere. |
962 |
|
963 |
"combi" |
964 |
|
965 |
The starin combination to considere. |
966 |
|
967 |
"form" |
968 |
|
969 |
The nuc form to considere. |
970 |
|
971 |
"config" |
972 |
|
973 |
GLOBAL config variable |
974 |
|
975 |
|
976 |
Author(s) |
977 |
~~~~~~~~~ |
978 |
|
979 |
Florent Chuffart |
980 |
|
981 |
R: get comp strand |
982 |
|
983 |
|
984 |
get comp strand |
985 |
--------------- |
986 |
|
987 |
|
988 |
Description |
989 |
~~~~~~~~~~~ |
990 |
|
991 |
Compute the complementatry strand. |
992 |
|
993 |
|
994 |
Usage |
995 |
~~~~~ |
996 |
|
997 |
get_comp_strand(strand) |
998 |
|
999 |
|
1000 |
Arguments |
1001 |
~~~~~~~~~ |
1002 |
|
1003 |
"strand" |
1004 |
|
1005 |
The original strand. |
1006 |
|
1007 |
|
1008 |
Value |
1009 |
~~~~~ |
1010 |
|
1011 |
Returns the complementatry strand. |
1012 |
|
1013 |
|
1014 |
Author(s) |
1015 |
~~~~~~~~~ |
1016 |
|
1017 |
Florent Chuffart |
1018 |
|
1019 |
R: Build the design for deseq |
1020 |
|
1021 |
|
1022 |
Build the design for deseq |
1023 |
-------------------------- |
1024 |
|
1025 |
|
1026 |
Description |
1027 |
~~~~~~~~~~~ |
1028 |
|
1029 |
This function build the design according sample properties. |
1030 |
|
1031 |
|
1032 |
Usage |
1033 |
~~~~~ |
1034 |
|
1035 |
get_design(marker, combi, all_samples) |
1036 |
|
1037 |
|
1038 |
Arguments |
1039 |
~~~~~~~~~ |
1040 |
|
1041 |
"marker" |
1042 |
|
1043 |
The marker to considere. |
1044 |
|
1045 |
"combi" |
1046 |
|
1047 |
The starin combination to considere. |
1048 |
|
1049 |
"all_samples" |
1050 |
|
1051 |
Global list of samples. |
1052 |
|
1053 |
|
1054 |
Author(s) |
1055 |
~~~~~~~~~ |
1056 |
|
1057 |
Florent Chuffart |
1058 |
|
1059 |
R: Compute the fuzzy nucs. |
1060 |
|
1061 |
|
1062 |
Compute the fuzzy nucs. |
1063 |
----------------------- |
1064 |
|
1065 |
|
1066 |
Description |
1067 |
~~~~~~~~~~~ |
1068 |
|
1069 |
This function aggregate non common wp nucs for each strain and |
1070 |
substract common wp nucs. It does not take care about the size of the |
1071 |
resulting fuzzy regions. It will be take into account in the count |
1072 |
read part og the pipeline. |
1073 |
|
1074 |
|
1075 |
Usage |
1076 |
~~~~~ |
1077 |
|
1078 |
get_fuzzy(combi, roi, roi_index, strain_maps, common_nuc_results, |
1079 |
config = NULL) |
1080 |
|
1081 |
|
1082 |
Arguments |
1083 |
~~~~~~~~~ |
1084 |
|
1085 |
"combi" |
1086 |
|
1087 |
The strain combination to consider. |
1088 |
|
1089 |
"roi" |
1090 |
|
1091 |
The region of interest. |
1092 |
|
1093 |
"roi_index" |
1094 |
|
1095 |
The region of interest index. |
1096 |
|
1097 |
"strain_maps" |
1098 |
|
1099 |
Nuc maps. |
1100 |
|
1101 |
"common_nuc_results" |
1102 |
|
1103 |
Common wp nuc maps |
1104 |
|
1105 |
"config" |
1106 |
|
1107 |
GLOBAL config variable |
1108 |
|
1109 |
|
1110 |
Author(s) |
1111 |
~~~~~~~~~ |
1112 |
|
1113 |
Florent Chuffart |
1114 |
|
1115 |
R: Compute the list of SNEPs for a given set of marker, strain... |
1116 |
|
1117 |
|
1118 |
Compute the list of SNEPs for a given set of marker, strain combination and nuc form. |
1119 |
------------------------------------------------------------------------------------- |
1120 |
|
1121 |
|
1122 |
Description |
1123 |
~~~~~~~~~~~ |
1124 |
|
1125 |
This function uses |
1126 |
|
1127 |
|
1128 |
Usage |
1129 |
~~~~~ |
1130 |
|
1131 |
get_sneps(marker, combi, form, all_samples, config = NULL) |
1132 |
|
1133 |
|
1134 |
Arguments |
1135 |
~~~~~~~~~ |
1136 |
|
1137 |
"marker" |
1138 |
|
1139 |
The marker involved. |
1140 |
|
1141 |
"combi" |
1142 |
|
1143 |
The strain combination involved. |
1144 |
|
1145 |
"form" |
1146 |
|
1147 |
the nuc form involved. |
1148 |
|
1149 |
"all_samples" |
1150 |
|
1151 |
Global list of samples. |
1152 |
|
1153 |
"config" |
1154 |
|
1155 |
GLOBAL config variable |
1156 |
|
1157 |
|
1158 |
Author(s) |
1159 |
~~~~~~~~~ |
1160 |
|
1161 |
Florent Chuffart |
1162 |
|
1163 |
|
1164 |
Examples |
1165 |
~~~~~~~~ |
1166 |
|
1167 |
marker = "H3K4me1" |
1168 |
combi = c("BY", "YJM") |
1169 |
form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy" |
1170 |
# foo = get_sneps(marker, combi, form) |
1171 |
# foo = get_sneps("H4K12ac", c("BY", "RM"), "wp") |
1172 |
|
1173 |
R: Likelihood ratio |
1174 |
|
1175 |
|
1176 |
Likelihood ratio |
1177 |
---------------- |
1178 |
|
1179 |
|
1180 |
Description |
1181 |
~~~~~~~~~~~ |
1182 |
|
1183 |
Compute the likelihood log of two set of value from two models Vs. a |
1184 |
unique model. |
1185 |
|
1186 |
|
1187 |
Usage |
1188 |
~~~~~ |
1189 |
|
1190 |
lod_score_vecs(x, y) |
1191 |
|
1192 |
|
1193 |
Arguments |
1194 |
~~~~~~~~~ |
1195 |
|
1196 |
"x" |
1197 |
|
1198 |
First vector. |
1199 |
|
1200 |
"y" |
1201 |
|
1202 |
Second vector. |
1203 |
|
1204 |
|
1205 |
Value |
1206 |
~~~~~ |
1207 |
|
1208 |
Returns the likelihood ratio. |
1209 |
|
1210 |
|
1211 |
Author(s) |
1212 |
~~~~~~~~~ |
1213 |
|
1214 |
Florent Chuffart |
1215 |
|
1216 |
|
1217 |
Examples |
1218 |
~~~~~~~~ |
1219 |
|
1220 |
# LOD score for 2 set of values |
1221 |
mean1=5; sd1=2; card2 = 250 |
1222 |
mean2=6; sd2=3; card1 = 200 |
1223 |
x1 = rnorm(card1, mean1, sd1) |
1224 |
x2 = rnorm(card2, mean2, sd2) |
1225 |
min = floor(min(c(x1,x2))) |
1226 |
max = ceiling(max(c(x1,x2))) |
1227 |
hist(c(x1,x2), xlim=c(min, max), breaks=min:max) |
1228 |
lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2) |
1229 |
lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3) |
1230 |
lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4) |
1231 |
lod_score_vecs(x1,x2) |
1232 |
|
1233 |
R: nm |
1234 |
|
1235 |
|
1236 |
nm |
1237 |
-- |
1238 |
|
1239 |
|
1240 |
Description |
1241 |
~~~~~~~~~~~ |
1242 |
|
1243 |
It provides a set of useful functions allowing to perform quantitative |
1244 |
analysis of nucleosomal epigenome. |
1245 |
|
1246 |
|
1247 |
Details |
1248 |
~~~~~~~ |
1249 |
|
1250 |
+-----------------+-----------------------------------------------------+ |
1251 |
| Package: | nucleominer | |
1252 |
+-----------------+-----------------------------------------------------+ |
1253 |
| Maintainer: | Florent Chuffart <florent.chuffart@ens-lyon.fr> | |
1254 |
+-----------------+-----------------------------------------------------+ |
1255 |
| Author: | Florent Chuffart | |
1256 |
+-----------------+-----------------------------------------------------+ |
1257 |
| Version: | 2.3.28 | |
1258 |
+-----------------+-----------------------------------------------------+ |
1259 |
| License: | CeCILL | |
1260 |
+-----------------+-----------------------------------------------------+ |
1261 |
| Title: | nm | |
1262 |
+-----------------+-----------------------------------------------------+ |
1263 |
| Depends: | seqinr, plotrix, DESeq, cachecache | |
1264 |
+-----------------+-----------------------------------------------------+ |
1265 |
|
1266 |
|
1267 |
Author(s) |
1268 |
~~~~~~~~~ |
1269 |
|
1270 |
Florent Chuffart |
1271 |
|
1272 |
R: Performaing ANOVAs |
1273 |
|
1274 |
|
1275 |
Performaing ANOVAs |
1276 |
------------------ |
1277 |
|
1278 |
|
1279 |
Description |
1280 |
~~~~~~~~~~~ |
1281 |
|
1282 |
Counts reads and Performs ANOVAS for each common nucleosomes involved. |
1283 |
|
1284 |
|
1285 |
Usage |
1286 |
~~~~~ |
1287 |
|
1288 |
perform_anovas(replicates, aligned_inter_strain_nucs, inputs_name = "Mnase_Seq", |
1289 |
plot_anova_boxes = FALSE) |
1290 |
|
1291 |
|
1292 |
Arguments |
1293 |
~~~~~~~~~ |
1294 |
|
1295 |
"replicates" |
1296 |
|
1297 |
Set of replicates, each replicate is a list of samples (ideally 3). |
1298 |
Each sample is a list like *sample = list(id=..., marker=..., |
1299 |
strain=..., roi=..., inputs=..., outputs=...)* with *roi = |
1300 |
list(name=..., begin=..., end=..., chr=..., genome=...)*. In the |
1301 |
*perform_anovas* contexte, we need 4 replicates (4 * (3 samples)): 2 |
1302 |
strains * (1 marker + 1 input (Mnase_Seq)). |
1303 |
|
1304 |
"aligned_inter_strain_nucs" |
1305 |
|
1306 |
List of common nucleosomes. |
1307 |
|
1308 |
"inputs_name" |
1309 |
|
1310 |
Name of the input. |
1311 |
|
1312 |
"plot_anova_boxes" |
1313 |
|
1314 |
Plot (or not) boxplot for each nuc. |
1315 |
|
1316 |
|
1317 |
Value |
1318 |
~~~~~ |
1319 |
|
1320 |
Returns ANOVA results and comunted reads. |
1321 |
|
1322 |
|
1323 |
Author(s) |
1324 |
~~~~~~~~~ |
1325 |
|
1326 |
Florent Chuffart |
1327 |
|
1328 |
R: Plot the distribution of reads. |
1329 |
|
1330 |
|
1331 |
Plot the distribution of reads. |
1332 |
------------------------------- |
1333 |
|
1334 |
|
1335 |
Description |
1336 |
~~~~~~~~~~~ |
1337 |
|
1338 |
This fuxntion use the deseq nomalization feature to compare |
1339 |
qualitatively the distribution. |
1340 |
|
1341 |
|
1342 |
Usage |
1343 |
~~~~~ |
1344 |
|
1345 |
plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE) |
1346 |
|
1347 |
|
1348 |
Arguments |
1349 |
~~~~~~~~~ |
1350 |
|
1351 |
"strain" |
1352 |
|
1353 |
The strain to considere. |
1354 |
|
1355 |
"marker" |
1356 |
|
1357 |
The marker to considere. |
1358 |
|
1359 |
"res" |
1360 |
|
1361 |
Data |
1362 |
|
1363 |
"all_samples" |
1364 |
|
1365 |
Global list of samples. |
1366 |
|
1367 |
"NEWPLOT" |
1368 |
|
1369 |
If FALSE the curve will be add to the current plot. |
1370 |
|
1371 |
|
1372 |
Author(s) |
1373 |
~~~~~~~~~ |
1374 |
|
1375 |
Florent Chuffart |
1376 |
|
1377 |
R: Remove wp nucs from common nucs list. |
1378 |
|
1379 |
|
1380 |
Remove wp nucs from common nucs list. |
1381 |
------------------------------------- |
1382 |
|
1383 |
|
1384 |
Description |
1385 |
~~~~~~~~~~~ |
1386 |
|
1387 |
It is based on common wp nucs index on nucs and region. |
1388 |
|
1389 |
|
1390 |
Usage |
1391 |
~~~~~ |
1392 |
|
1393 |
remove_aligned_wp(strain_maps, roi_index, tmp_common_nucs, strain) |
1394 |
|
1395 |
|
1396 |
Arguments |
1397 |
~~~~~~~~~ |
1398 |
|
1399 |
"strain_maps" |
1400 |
|
1401 |
Nuc maps. |
1402 |
|
1403 |
"roi_index" |
1404 |
|
1405 |
The region of interest index. |
1406 |
|
1407 |
"tmp_common_nucs" |
1408 |
|
1409 |
the list of wp nucs. |
1410 |
|
1411 |
"strain" |
1412 |
|
1413 |
The strain to consider. |
1414 |
|
1415 |
|
1416 |
Author(s) |
1417 |
~~~~~~~~~ |
1418 |
|
1419 |
Florent Chuffart |
1420 |
|
1421 |
R: sign from strand |
1422 |
|
1423 |
|
1424 |
sign from strand |
1425 |
---------------- |
1426 |
|
1427 |
|
1428 |
Description |
1429 |
~~~~~~~~~~~ |
1430 |
|
1431 |
Get the sign of strand |
1432 |
|
1433 |
|
1434 |
Usage |
1435 |
~~~~~ |
1436 |
|
1437 |
sign_from_strand(strands) |
1438 |
|
1439 |
|
1440 |
Arguments |
1441 |
~~~~~~~~~ |
1442 |
|
1443 |
+-----------------+------+ |
1444 |
+-----------------+------+ |
1445 |
|
1446 |
|
1447 |
Value |
1448 |
~~~~~ |
1449 |
|
1450 |
If strand in forward then returns 1 else returns -1 |
1451 |
|
1452 |
|
1453 |
Author(s) |
1454 |
~~~~~~~~~ |
1455 |
|
1456 |
Florent Chuffart |
1457 |
|
1458 |
R: Substract to a list of regions an other list of regions that... |
1459 |
|
1460 |
|
1461 |
Substract to a list of regions an other list of regions that intersect it. |
1462 |
-------------------------------------------------------------------------- |
1463 |
|
1464 |
|
1465 |
Description |
1466 |
~~~~~~~~~~~ |
1467 |
|
1468 |
This fucntion embed a recursive part. It occurs when a substracted |
1469 |
region split an original region on two. |
1470 |
|
1471 |
|
1472 |
Usage |
1473 |
~~~~~ |
1474 |
|
1475 |
substract_region(region1, region2) |
1476 |
|
1477 |
|
1478 |
Arguments |
1479 |
~~~~~~~~~ |
1480 |
|
1481 |
"region1" |
1482 |
|
1483 |
Original regions. |
1484 |
|
1485 |
"region2" |
1486 |
|
1487 |
Regions to substract. |
1488 |
|
1489 |
|
1490 |
Author(s) |
1491 |
~~~~~~~~~ |
1492 |
|
1493 |
Florent Chuffart |
1494 |
|
1495 |
R: Switch a pairlist |
1496 |
|
1497 |
|
1498 |
Switch a pairlist |
1499 |
----------------- |
1500 |
|
1501 |
|
1502 |
Description |
1503 |
~~~~~~~~~~~ |
1504 |
|
1505 |
Take a pairlist key:value and return the switched pairlist value:key. |
1506 |
|
1507 |
|
1508 |
Usage |
1509 |
~~~~~ |
1510 |
|
1511 |
switch_pairlist(l) |
1512 |
|
1513 |
|
1514 |
Arguments |
1515 |
~~~~~~~~~ |
1516 |
|
1517 |
"l" |
1518 |
|
1519 |
The pairlist to switch. |
1520 |
|
1521 |
|
1522 |
Value |
1523 |
~~~~~ |
1524 |
|
1525 |
The switched pairlist. |
1526 |
|
1527 |
|
1528 |
Author(s) |
1529 |
~~~~~~~~~ |
1530 |
|
1531 |
Florent Chuffart |
1532 |
|
1533 |
|
1534 |
Examples |
1535 |
~~~~~~~~ |
1536 |
|
1537 |
l = list(key1 = "value1", key2 = "value2") |
1538 |
print(switch_pairlist(l)) |
1539 |
|
1540 |
R: Translate a list of regions from a strain ref to another. |
1541 |
|
1542 |
|
1543 |
Translate a list of regions from a strain ref to another. |
1544 |
--------------------------------------------------------- |
1545 |
|
1546 |
|
1547 |
Description |
1548 |
~~~~~~~~~~~ |
1549 |
|
1550 |
This function is an eloborated call to translate_roi. |
1551 |
|
1552 |
|
1553 |
Usage |
1554 |
~~~~~ |
1555 |
|
1556 |
translate_regions(regions, combi, roi_index, config = NULL, roi) |
1557 |
|
1558 |
|
1559 |
Arguments |
1560 |
~~~~~~~~~ |
1561 |
|
1562 |
"regions" |
1563 |
|
1564 |
Regions to be translated. |
1565 |
|
1566 |
"combi" |
1567 |
|
1568 |
Combination of strains. |
1569 |
|
1570 |
"roi_index" |
1571 |
|
1572 |
The region of interest index. |
1573 |
|
1574 |
"config" |
1575 |
|
1576 |
GLOBAL config variable |
1577 |
|
1578 |
"roi" |
1579 |
|
1580 |
The region of interest. |
1581 |
|
1582 |
|
1583 |
Author(s) |
1584 |
~~~~~~~~~ |
1585 |
|
1586 |
Florent Chuffart |
1587 |
|
1588 |
R: Translate coords of a genome region. |
1589 |
|
1590 |
|
1591 |
Translate coords of a genome region. |
1592 |
------------------------------------ |
1593 |
|
1594 |
|
1595 |
Description |
1596 |
~~~~~~~~~~~ |
1597 |
|
1598 |
This function is used in the examples, usualy you have to define your |
1599 |
own translation function and overwrite this one using *unlockBinding* |
1600 |
features. Please, refer to the example. |
1601 |
|
1602 |
|
1603 |
Usage |
1604 |
~~~~~ |
1605 |
|
1606 |
translate_roi(roi, strain2, config = NULL, big_roi = NULL) |
1607 |
|
1608 |
|
1609 |
Arguments |
1610 |
~~~~~~~~~ |
1611 |
|
1612 |
"roi" |
1613 |
|
1614 |
Original genome region of interest. |
1615 |
|
1616 |
"strain2" |
1617 |
|
1618 |
The strain in wich you want the genome region of interest. |
1619 |
|
1620 |
"config" |
1621 |
|
1622 |
GLOBAL config variable |
1623 |
|
1624 |
"big_roi" |
1625 |
|
1626 |
A largest region than roi use to filter c2c if it is needed. |
1627 |
|
1628 |
|
1629 |
Author(s) |
1630 |
~~~~~~~~~ |
1631 |
|
1632 |
Florent Chuffart |
1633 |
|
1634 |
|
1635 |
Examples |
1636 |
~~~~~~~~ |
1637 |
|
1638 |
# Define new translate_roi function... |
1639 |
translate_roi = function(roi, strain2, config) { |
1640 |
strain1 = roi$strain_ref |
1641 |
if (strain1 == strain2) { |
1642 |
return(roi) |
1643 |
} else { |
1644 |
stop("Here is my new translate_roi function...") |
1645 |
} |
1646 |
} |
1647 |
# Binding it by uncomment follwing lines. |
1648 |
# unlockBinding("translate_roi", as.environment("package:nm")) |
1649 |
# unlockBinding("translate_roi", getNamespace("nm")) |
1650 |
# assign("translate_roi", translate_roi, "package:nm") |
1651 |
# assign("translate_roi", translate_roi, getNamespace("nm")) |
1652 |
# lockBinding("translate_roi", getNamespace("nm")) |
1653 |
# lockBinding("translate_roi", as.environment("package:nm")) |
1654 |
|
1655 |
R: Aggregate regions that intersect themnselves. |
1656 |
|
1657 |
|
1658 |
Aggregate regions that intersect themnselves. |
1659 |
--------------------------------------------- |
1660 |
|
1661 |
|
1662 |
Description |
1663 |
~~~~~~~~~~~ |
1664 |
|
1665 |
This function is based on sort of lower bounds to detect regions that |
1666 |
intersect. We compare lower bound and upper bound of the porevious |
1667 |
item. This function embed a while loop and break break regions list |
1668 |
become stable. |
1669 |
|
1670 |
|
1671 |
Usage |
1672 |
~~~~~ |
1673 |
|
1674 |
union_regions(regions) |
1675 |
|
1676 |
|
1677 |
Arguments |
1678 |
~~~~~~~~~ |
1679 |
|
1680 |
"regions" |
1681 |
|
1682 |
The Regions to be aggregated |
1683 |
|
1684 |
|
1685 |
Author(s) |
1686 |
~~~~~~~~~ |
1687 |
|
1688 |
Florent Chuffart |
1689 |
|
1690 |
R: Watching analysis of samples |
1691 |
|
1692 |
|
1693 |
Watching analysis of samples |
1694 |
---------------------------- |
1695 |
|
1696 |
|
1697 |
Description |
1698 |
~~~~~~~~~~~ |
1699 |
|
1700 |
This function allows to view analysis for a particuler region of the |
1701 |
genome. |
1702 |
|
1703 |
|
1704 |
Usage |
1705 |
~~~~~ |
1706 |
|
1707 |
watch_samples(replicates, read_length, plot_ref_genome = TRUE, |
1708 |
plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, |
1709 |
plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, |
1710 |
plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, |
1711 |
change_col = TRUE, plot_wp_nucs = TRUE, plot_wp_nuc_model = TRUE, |
1712 |
plot_common_nucs = TRUE, plot_anovas = FALSE, plot_anova_boxes = FALSE, |
1713 |
plot_wp_nucs_4_nonmnase = FALSE, plot_chain = FALSE, aggregated_intra_strain_nucs = NULL, |
1714 |
aligned_inter_strain_nucs = NULL, height = 10, config = NULL) |
1715 |
|
1716 |
|
1717 |
Arguments |
1718 |
~~~~~~~~~ |
1719 |
|
1720 |
"replicates" |
1721 |
|
1722 |
replicates under the form... |
1723 |
|
1724 |
"read_length" |
1725 |
|
1726 |
length of the reads |
1727 |
|
1728 |
"plot_ref_genome" |
1729 |
|
1730 |
Plot (or not) reference genome. |
1731 |
|
1732 |
"plot_arrow_raw_reads" |
1733 |
|
1734 |
Plot (or not) arrows for raw reads. |
1735 |
|
1736 |
"plot_arrow_nuc_reads" |
1737 |
|
1738 |
Plot (or not) arrows for reads aasiocied to a nucleosome. |
1739 |
|
1740 |
"plot_squared_reads" |
1741 |
|
1742 |
Plot (or not) reads in the square fashion. |
1743 |
|
1744 |
"plot_coverage" |
1745 |
|
1746 |
Plot (or not) reads in the covergae fashion. fashion. |
1747 |
|
1748 |
"plot_gaussian_reads" |
1749 |
|
1750 |
Plot (or not) gaussian model of a F anf R reads. |
1751 |
|
1752 |
"plot_gaussian_unified_reads" |
1753 |
|
1754 |
Plot (or not) gaussian model of a nuc. |
1755 |
|
1756 |
"plot_ellipse_nucs" |
1757 |
|
1758 |
Plot (or not) ellipse for a nuc. |
1759 |
|
1760 |
"change_col" |
1761 |
|
1762 |
Change the color of each nucleosome. |
1763 |
|
1764 |
"plot_wp_nucs" |
1765 |
|
1766 |
Plot (or not) cluster of nucs |
1767 |
|
1768 |
"plot_wp_nuc_model" |
1769 |
|
1770 |
Plot (or not) gaussian model for a cluster of nucs |
1771 |
|
1772 |
"plot_common_nucs" |
1773 |
|
1774 |
Plot (or not) aligned reads. |
1775 |
|
1776 |
"plot_anovas" |
1777 |
|
1778 |
Plot (or not) scatter for each nuc. |
1779 |
|
1780 |
"plot_anova_boxes" |
1781 |
|
1782 |
Plot (or not) boxplot for each nuc. |
1783 |
|
1784 |
"plot_wp_nucs_4_nonmnase" |
1785 |
|
1786 |
Plot (or not) clusters for non inputs samples. |
1787 |
|
1788 |
"plot_chain" |
1789 |
|
1790 |
Plot (or not) clusterised nuceosomes between mnase samples. |
1791 |
|
1792 |
"aggregated_intra_strain_nucs" |
1793 |
|
1794 |
list of aggregated intra strain nucs. If NULL, it will be computed. |
1795 |
|
1796 |
"aligned_inter_strain_nucs" |
1797 |
|
1798 |
list of aligned inter strain nucs. If NULL, it will be computed. |
1799 |
|
1800 |
"height" |
1801 |
|
1802 |
Number of reads in per million read for each sample, graphical |
1803 |
parametre for the y axis. |
1804 |
|
1805 |
"config" |
1806 |
|
1807 |
GLOBAL config variable |
1808 |
|
1809 |
|
1810 |
Author(s) |
1811 |
~~~~~~~~~ |
1812 |
|
1813 |
Florent Chuffart |