Statistiques
| Branche: | Révision :

root / doc / sphinx_doc / rref.rst @ 1d833b97

Historique | Voir | Annoter | Télécharger (25,03 ko)

1
Arabic to Roman pair list.
2
--------------------------
3

    
4
Description
5
~~~~~~~~~~~
6

    
7
Util to convert Arabicto Roman
8

    
9
Usage
10
~~~~~
11

    
12
::
13

    
14
    ARAB2ROM()
15

    
16
Author(s)
17
~~~~~~~~~
18

    
19
Florent Chuffart
20

    
21
R: False Discovery Rate
22

    
23
False Discovery Rate
24
--------------------
25

    
26
Description
27
~~~~~~~~~~~
28

    
29
From a vector x of independent p-values, extract the cutoff
30
corresponding to the specified FDR. See Benjamini & Hochberg 1995 paper
31

    
32
Usage
33
~~~~~
34

    
35
::
36

    
37
    FDR(x, FDR)
38

    
39
Arguments
40
~~~~~~~~~
41

    
42
``x``
43

    
44
A vector x of independent p-values.
45

    
46
``FDR``
47

    
48
The specified FDR.
49

    
50
Value
51
~~~~~
52

    
53
Return the the corresponding cutoff.
54

    
55
Author(s)
56
~~~~~~~~~
57

    
58
Gael Yvert, Florent Chuffart
59

    
60
Examples
61
~~~~~~~~
62

    
63
::
64

    
65
    print("example")
66

    
67
R: Roman to Arabic pair list.
68

    
69
Roman to Arabic pair list.
70
--------------------------
71

    
72
Description
73
~~~~~~~~~~~
74

    
75
Util to convert Roman to Arabic
76

    
77
Usage
78
~~~~~
79

    
80
::
81

    
82
    ROM2ARAB()
83

    
84
Author(s)
85
~~~~~~~~~
86

    
87
Florent Chuffart
88

    
89
R: Aggregate replicated sample's nucleosomes.
90

    
91
Aggregate replicated sample's nucleosomes.
92
------------------------------------------
93

    
94
Description
95
~~~~~~~~~~~
96

    
97
This function aggregates nucleosome for replicated samples. It uses
98
TemplateFilter ouput of each sample as replicate. Each sample owns a set
99
of nucleosomes computed using TemplateFilter and ordered by the position
100
of their center. Adajacent nucleosomes are compared two by two.
101
Comparison is based on a log likelihood ratio score. The issue of
102
comparison is adjacents nucleosomes merge or separation. Finally the
103
function returns a list of clusters and all computed *lod\_scores*. Each
104
cluster ows an attribute *wp* for "well positionned". This attribute is
105
set as *TRUE* if the cluster is composed of exactly one nucleosomes of
106
each sample.
107

    
108
Usage
109
~~~~~
110

    
111
::
112

    
113
    aggregate_intra_strain_nucs(samples, lod_thres = -20, coord_max = 2e+07)
114

    
115
Arguments
116
~~~~~~~~~
117

    
118
``samples``
119

    
120
A list of samples. Each sample is a list like *sample = list(id=...,
121
marker=..., strain=..., roi=..., inputs=..., outputs=...)* with *roi =
122
list(name=..., begin=..., end=..., chr=..., genome=...)*.
123

    
124
``lod_thres``
125

    
126
Log likelihood ration threshold.
127

    
128
``coord_max``
129

    
130
A too big value to be a coord for a nucleosome lower bound.
131

    
132
Value
133
~~~~~
134

    
135
Returns a list of clusterized nucleosomes, and all computed lod scores.
136

    
137
Author(s)
138
~~~~~~~~~
139

    
140
Florent Chuffart
141

    
142
Examples
143
~~~~~~~~
144

    
145
::
146

    
147
    # Dealing with a region of interest
148
    roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301))
149
    samples = list()
150
    for (i in 1:3) {
151
        # Create TF output
152
        tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
153
        outputs = dfadd(NULL,tf_nuc)
154
        outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
155
        # Generate corresponding reads
156
        nb_reads = round(runif(1,170,230))
157
        reads = round(rnorm(nb_reads, tf_nuc$center,20))
158
        u_reads = sort(unique(reads))
159
        strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
160
        counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
161
        shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
162
        u_reads = u_reads + shifts
163
        inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), 
164
                                 "V2" = u_reads, 
165
                                                         "V3" = strands, 
166
                                                         "V4" = counts), stringsAsFactors=FALSE)
167
        samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain="strain_ex", total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
168
    }
169
    print(aggregate_intra_strain_nucs(samples))
170

    
171
R: Aligns nucleosomes between 2 strains.
172

    
173
Aligns nucleosomes between 2 strains.
174
-------------------------------------
175

    
176
Description
177
~~~~~~~~~~~
178

    
179
This function aligns nucs between two strains for a given genome region.
180

    
181
Usage
182
~~~~~
183

    
184
::
185

    
186
    align_inter_strain_nucs(replicates, wp_nucs_strain_ref1 = NULL, 
187
        wp_nucs_strain_ref2 = NULL, corr_thres = 0.5, lod_thres = -100, 
188
        config = NULL, ...)
189

    
190
Arguments
191
~~~~~~~~~
192

    
193
``replicates``
194

    
195
Set of replicates, ideally 3 per strain.
196

    
197
``wp_nucs_strain_ref1``
198

    
199
List of aggregates nucleosome for strain 1. If it's null this list will
200
be computed.
201

    
202
``wp_nucs_strain_ref2``
203

    
204
List of aggregates nucleosome for strain 2. If it's null this list will
205
be computed.
206

    
207
``corr_thres``
208

    
209
Correlation threshold.
210

    
211
``lod_thres``
212

    
213
LOD cut off.
214

    
215
``config``
216

    
217
GLOBAL config variable
218

    
219
``...``
220

    
221
A list of parameters that will be passed to
222
*aggregate\_intra\_strain\_nucs* if needed.
223

    
224
Value
225
~~~~~
226

    
227
Returns a list of clusterized nucleosomes, and all computed lod scores.
228

    
229
Author(s)
230
~~~~~~~~~
231

    
232
Florent Chuffart
233

    
234
Examples
235
~~~~~~~~
236

    
237
::
238

    
239

    
240
        # Define new translate_roi function...
241
        translate_roi = function(roi, strain2, big_roi=NULL, config=NULL) {
242
          return(roi)
243
        }
244
        # Binding it by uncomment follwing lines.
245
        unlockBinding("translate_roi", as.environment("package:nucleominer"))
246
        unlockBinding("translate_roi", getNamespace("nucleominer"))
247
        assign("translate_roi", translate_roi, "package:nucleominer")
248
        assign("translate_roi", translate_roi, getNamespace("nucleominer"))
249
        lockBinding("translate_roi", getNamespace("nucleominer"))
250
        lockBinding("translate_roi", as.environment("package:nucleominer"))  
251

    
252
    # Dealing with a region of interest
253
    roi =list(name="example", begin=1000,  end=1300, chr="1", genome=rep("A",301), strain_ref1 = "STRAINREF1")
254
    roi2 = translate_roi(roi, roi$strain_ref1)
255
    replicates = list()
256
    for (j in 1:2) {
257
        samples = list()
258
        for (i in 1:3) {
259
            # Create TF output
260
            tf_nuc = list("chr"=paste("chr", roi$chr, sep=""), "center"=(roi$end + roi$begin)/2, "width"= 150, "correlation.score"= 0.9)
261
            outputs = dfadd(NULL,tf_nuc)
262
            outputs = filter_tf_outputs(outputs, roi$chr, roi$begin, roi$end)
263
            # Generate corresponding reads
264
            nb_reads = round(runif(1,170,230))
265
            reads = round(rnorm(nb_reads, tf_nuc$center,20))
266
            u_reads = sort(unique(reads))
267
            strands = sample(c(rep("R",ceiling(length(u_reads)/2)),rep("F",floor(length(u_reads)/2))))
268
            counts = apply(t(u_reads), 2, function(r) { sum(reads == r)})
269
            shifts = apply(t(strands), 2, function(s) { if (s == "F") return(-tf_nuc$width/2) else return(tf_nuc$width/2)})
270
            u_reads = u_reads + shifts
271
            inputs = data.frame(list("V1" = rep(roi$chr, length(u_reads)), 
272
                                     "V2" = u_reads, 
273
                                                             "V3" = strands, 
274
                                                             "V4" = counts), stringsAsFactors=FALSE)
275
            samples[[length(samples) + 1]] = list(id=1, marker="Mnase_Seq", strain=paste("strain_ex",j,sep=""), total_reads = 10000000, roi=roi, inputs=inputs, outputs=outputs)
276
        }
277
        replicates[[length(replicates) + 1]] = samples
278
    }
279
    print(align_inter_strain_nucs(replicates))
280

    
281
R: Launch deseq methods.
282

    
283
Launch deseq methods.
284
---------------------
285

    
286
Description
287
~~~~~~~~~~~
288

    
289
This function is based on deseq example. It mormalizes data, fit data to
290
GLM model with and without interaction term and compare the two
291
l;=models.
292

    
293
Usage
294
~~~~~
295

    
296
::
297

    
298
    analyse_design(snep_design, reads)
299

    
300
Arguments
301
~~~~~~~~~
302

    
303
``snep_design``
304

    
305
The design to considere.
306

    
307
``reads``
308

    
309
The data to considere.
310

    
311
Author(s)
312
~~~~~~~~~
313

    
314
Florent Chuffart
315

    
316
R: Compute Common Uninterrupted Regions (CUR)
317

    
318
Compute Common Uninterrupted Regions (CUR)
319
------------------------------------------
320

    
321
Description
322
~~~~~~~~~~~
323

    
324
CURs are regions that can be aligned between the genomes
325

    
326
Usage
327
~~~~~
328

    
329
::
330

    
331
    compute_inter_all_strain_curs(diff_allowed = 10, min_cur_width = 200, 
332
        config = NULL, plot = FALSE)
333

    
334
Arguments
335
~~~~~~~~~
336

    
337
``diff_allowed``
338

    
339
the maximum indel width allowe din a CUR
340

    
341
``min_cur_width``
342

    
343
The minimum width of a CUR
344

    
345
``config``
346

    
347
GLOBAL config variable
348

    
349
``plot``
350

    
351
Plot CURs or not
352

    
353
Author(s)
354
~~~~~~~~~
355

    
356
Florent Chuffart
357

    
358
R: Crop bound of regions according to region of interest bound
359

    
360
Crop bound of regions according to region of interest bound
361
-----------------------------------------------------------
362

    
363
Description
364
~~~~~~~~~~~
365

    
366
The fucntion is no more necessary since we remove "big\_roi" bug in
367
translate\_roi function.
368

    
369
Usage
370
~~~~~
371

    
372
::
373

    
374
    crop_fuzzy(tmp_fuzzy_nucs, roi, strain, config = NULL)
375

    
376
Arguments
377
~~~~~~~~~
378

    
379
``tmp_fuzzy_nucs``
380

    
381
the regiuons to be croped.
382

    
383
``roi``
384

    
385
The region of interest.
386

    
387
``strain``
388

    
389
The strain to consider.
390

    
391
``config``
392

    
393
GLOBAL config variable
394

    
395
Author(s)
396
~~~~~~~~~
397

    
398
Florent Chuffart
399

    
400
R: Adding list to a dataframe.
401

    
402
Adding list to a dataframe.
403
---------------------------
404

    
405
Description
406
~~~~~~~~~~~
407

    
408
Add a list *l* to a dataframe *df*. Create it if *df* is *NULL*. Return
409
the dataframe *df*.
410

    
411
Usage
412
~~~~~
413

    
414
::
415

    
416
    dfadd(df, l)
417

    
418
Arguments
419
~~~~~~~~~
420

    
421
``df``
422

    
423
A dataframe
424

    
425
``l``
426

    
427
A list
428

    
429
Value
430
~~~~~
431

    
432
Return the dataframe *df*.
433

    
434
Author(s)
435
~~~~~~~~~
436

    
437
Florent Chuffart
438

    
439
Examples
440
~~~~~~~~
441

    
442
::
443

    
444
    ## Here dataframe is NULL
445
    print(df)
446
    df = NULL
447

    
448
    # Initialize df
449
    df = dfadd(df, list(key1 = "value1", key2 = "value2"))
450
    print(df)
451

    
452
    # Adding elements to df
453
    df = dfadd(df, list(key1 = "value1'", key2 = "value2'"))
454
    print(df)
455

    
456
R: Extract wp nucs from nuc map.
457

    
458
Extract wp nucs from nuc map.
459
-----------------------------
460

    
461
Description
462
~~~~~~~~~~~
463

    
464
Function based on common wp nuc index and roi\_index.
465

    
466
Usage
467
~~~~~
468

    
469
::
470

    
471
    extract_wp(strain_maps, roi_index, strain, tmp_common_nucs)
472

    
473
Arguments
474
~~~~~~~~~
475

    
476
``strain_maps``
477

    
478
Nuc maps.
479

    
480
``roi_index``
481

    
482
The region of interest index.
483

    
484
``strain``
485

    
486
The strain to consider.
487

    
488
``tmp_common_nucs``
489

    
490
the list of wp nucs.
491

    
492
Author(s)
493
~~~~~~~~~
494

    
495
Florent Chuffart
496

    
497
R: Prefetch data
498

    
499
Prefetch data
500
-------------
501

    
502
Description
503
~~~~~~~~~~~
504

    
505
Fetch and filter inputs and outpouts per region of interest. Organize it
506
per replicates.
507

    
508
Usage
509
~~~~~
510

    
511
::
512

    
513
    fetch_mnase_replicates(strain, roi, all_samples, config = NULL, 
514
        only_fetch = FALSE, get_genome = FALSE, get_ouputs = TRUE)
515

    
516
Arguments
517
~~~~~~~~~
518

    
519
``strain``
520

    
521
The strain we want mnase replicatesList of replicates. Each replicates
522
is a vector of sample ids.
523

    
524
``roi``
525

    
526
Region of interest.
527

    
528
``all_samples``
529

    
530
Global list of samples.
531

    
532
``config``
533

    
534
GLOBAL config variable
535

    
536
``only_fetch``
537

    
538
If TRUE, only fetch and not filtering. It is used tio load sample files
539
into memory before forking.
540

    
541
``get_genome``
542

    
543
If TRUE, load corresponding genome sequence.
544

    
545
``get_ouputs``
546

    
547
If TRUE, get also ouput corresponding TF output files.
548

    
549
Author(s)
550
~~~~~~~~~
551

    
552
Florent Chuffart
553

    
554
R: Filter TemplateFilter inputs
555

    
556
Filter TemplateFilter inputs
557
----------------------------
558

    
559
Description
560
~~~~~~~~~~~
561

    
562
This function filters TemplateFilter inputs according genome area
563
observed properties. It takes into account reads that are at the
564
frontier of this area and the strand of these reads.
565

    
566
Usage
567
~~~~~
568

    
569
::
570

    
571
    filter_tf_inputs(inputs, chr, x_min, x_max, nuc_width = 160, 
572
        only_f = FALSE, only_r = FALSE)
573

    
574
Arguments
575
~~~~~~~~~
576

    
577
``inputs``
578

    
579
TF inputs to be filtered.
580

    
581
``chr``
582

    
583
Chromosome observed, here chr is an integer.
584

    
585
``x_min``
586

    
587
Coordinate of the first bp observed.
588

    
589
``x_max``
590

    
591
Coordinate of the last bp observed.
592

    
593
``nuc_width``
594

    
595
Nucleosome width.
596

    
597
``only_f``
598

    
599
Filter only F reads.
600

    
601
``only_r``
602

    
603
Filter only R reads.
604

    
605
Value
606
~~~~~
607

    
608
Returns filtred inputs.
609

    
610
Author(s)
611
~~~~~~~~~
612

    
613
Florent Chuffart
614

    
615
R: Filter TemplateFilter outputs
616

    
617
Filter TemplateFilter outputs
618
-----------------------------
619

    
620
Description
621
~~~~~~~~~~~
622

    
623
This function filters TemplateFilter outputs according, not only genome
624
area observerved properties, but also correlation and overlap threshold.
625

    
626
Usage
627
~~~~~
628

    
629
::
630

    
631
    filter_tf_outputs(tf_outputs, chr, x_min, x_max, nuc_width = 160, 
632
        ol_bp = 59, corr_thres = 0.5)
633

    
634
Arguments
635
~~~~~~~~~
636

    
637
``tf_outputs``
638

    
639
TemplateFilter outputs.
640

    
641
``chr``
642

    
643
Chromosome observed, here chr is an integer.
644

    
645
``x_min``
646

    
647
Coordinate of the first bp observed.
648

    
649
``x_max``
650

    
651
Coordinate of the last bp observed.
652

    
653
``nuc_width``
654

    
655
Nucleosome width.
656

    
657
``ol_bp``
658

    
659
Overlap Threshold.
660

    
661
``corr_thres``
662

    
663
Correlation threshold.
664

    
665
Value
666
~~~~~
667

    
668
Returns filtered TemplateFilter Outputs
669

    
670
Author(s)
671
~~~~~~~~~
672

    
673
Florent Chuffart
674

    
675
R: flat reads
676

    
677
flat reads
678
----------
679

    
680
Description
681
~~~~~~~~~~~
682

    
683
Extract reads coordinates from TempleteFilter input sequence
684

    
685
Usage
686
~~~~~
687

    
688
::
689

    
690
    flat_reads(reads, nuc_width)
691

    
692
Arguments
693
~~~~~~~~~
694

    
695
``reads``
696

    
697
TemplateFilter input reads
698

    
699
``nuc_width``
700

    
701
Width used to shift F and R reads.
702

    
703
Value
704
~~~~~
705

    
706
Returns a list of F reads, R reads and joint/shifted F and R reads.
707

    
708
Author(s)
709
~~~~~~~~~
710

    
711
Florent Chuffart
712

    
713
R: Retrieve Reads
714

    
715
Retrieve Reads
716
--------------
717

    
718
Description
719
~~~~~~~~~~~
720

    
721
Retrieve reads for a given marker, combi, form.
722

    
723
Usage
724
~~~~~
725

    
726
::
727

    
728
    get_all_reads(marker, combi, form = "wp")
729

    
730
Arguments
731
~~~~~~~~~
732

    
733
``marker``
734

    
735
The marker to considere.
736

    
737
``combi``
738

    
739
The starin combination to considere.
740

    
741
``form``
742

    
743
The nuc form to considere.
744

    
745
Author(s)
746
~~~~~~~~~
747

    
748
Florent Chuffart
749

    
750
R: get comp strand
751

    
752
get comp strand
753
---------------
754

    
755
Description
756
~~~~~~~~~~~
757

    
758
Compute the complementatry strand.
759

    
760
Usage
761
~~~~~
762

    
763
::
764

    
765
    get_comp_strand(strand)
766

    
767
Arguments
768
~~~~~~~~~
769

    
770
``strand``
771

    
772
The original strand.
773

    
774
Value
775
~~~~~
776

    
777
Returns the complementatry strand.
778

    
779
Author(s)
780
~~~~~~~~~
781

    
782
Florent Chuffart
783

    
784
R: Build the design for deseq
785

    
786
Build the design for deseq
787
--------------------------
788

    
789
Description
790
~~~~~~~~~~~
791

    
792
This function build the design according sample properties.
793

    
794
Usage
795
~~~~~
796

    
797
::
798

    
799
    get_design(marker, combi, all_samples)
800

    
801
Arguments
802
~~~~~~~~~
803

    
804
``marker``
805

    
806
The marker to considere.
807

    
808
``combi``
809

    
810
The starin combination to considere.
811

    
812
``all_samples``
813

    
814
Global list of samples.
815

    
816
Author(s)
817
~~~~~~~~~
818

    
819
Florent Chuffart
820

    
821
R: Compute the fuzzy nucs.
822

    
823
Compute the fuzzy nucs.
824
-----------------------
825

    
826
Description
827
~~~~~~~~~~~
828

    
829
This function aggregate non common wp nucs for each strain and substract
830
common wp nucs. It does not take care about the size of the resulting
831
fuzzy regions. It will be take into account in the count read part og
832
the pipeline.
833

    
834
Usage
835
~~~~~
836

    
837
::
838

    
839
    get_fuzzy(combi, roi, roi_index, strain_maps, common_nuc_results, 
840
        config = NULL)
841

    
842
Arguments
843
~~~~~~~~~
844

    
845
``combi``
846

    
847
The strain combination to consider.
848

    
849
``roi``
850

    
851
The region of interest.
852

    
853
``roi_index``
854

    
855
The region of interest index.
856

    
857
``strain_maps``
858

    
859
Nuc maps.
860

    
861
``common_nuc_results``
862

    
863
Common wp nuc maps
864

    
865
``config``
866

    
867
GLOBAL config variable
868

    
869
Author(s)
870
~~~~~~~~~
871

    
872
Florent Chuffart
873

    
874
R: Compute the list of SNEPs for a given set of marker, strain...
875

    
876
Compute the list of SNEPs for a given set of marker, strain combination and nuc form.
877
-------------------------------------------------------------------------------------
878

    
879
Description
880
~~~~~~~~~~~
881

    
882
This function uses
883

    
884
Usage
885
~~~~~
886

    
887
::
888

    
889
    get_sneps(marker, combi, form, all_samples)
890

    
891
Arguments
892
~~~~~~~~~
893

    
894
``marker``
895

    
896
The marker involved.
897

    
898
``combi``
899

    
900
The strain combination involved.
901

    
902
``form``
903

    
904
the nuc form involved.
905

    
906
``all_samples``
907

    
908
Global list of samples.
909

    
910
Author(s)
911
~~~~~~~~~
912

    
913
Florent Chuffart
914

    
915
Examples
916
~~~~~~~~
917

    
918
::
919

    
920
    marker = "H3K4me1"
921
    combi = c("BY", "YJM") 
922
    form = "wpfuzzy" # "wp" | "fuzzy" | "wpfuzzy"
923
    # foo = get_sneps(marker, combi, form)
924
    # foo = get_sneps("H4K12ac", c("BY", "RM"), "wp")
925

    
926
R: Likelihood ratio
927

    
928
Likelihood ratio
929
----------------
930

    
931
Description
932
~~~~~~~~~~~
933

    
934
Compute the likelihood log of two set of value from two models Vs. a
935
unique model.
936

    
937
Usage
938
~~~~~
939

    
940
::
941

    
942
    lod_score_vecs(x, y)
943

    
944
Arguments
945
~~~~~~~~~
946

    
947
``x``
948

    
949
First vector.
950

    
951
``y``
952

    
953
Second vector.
954

    
955
Value
956
~~~~~
957

    
958
Returns the likelihood ratio.
959

    
960
Author(s)
961
~~~~~~~~~
962

    
963
Florent Chuffart
964

    
965
Examples
966
~~~~~~~~
967

    
968
::
969

    
970
    # LOD score for 2 set of values
971
    mean1=5; sd1=2; card2 = 250
972
    mean2=6; sd2=3; card1 = 200
973
    x1 = rnorm(card1, mean1, sd1)
974
    x2 = rnorm(card2, mean2, sd2)  
975
    min = floor(min(c(x1,x2)))
976
    max = ceiling(max(c(x1,x2)))
977
    hist(c(x1,x2), xlim=c(min, max), breaks=min:max)
978
    lines(min:max,dnorm(min:max,mean1,sd1)*card1,col=2)
979
    lines(min:max,dnorm(min:max,mean2,sd2)*card2,col=3)
980
    lines(min:max,dnorm(min:max,mean(c(x1,x2)),sd(c(x1,x2)))*card2,col=4)
981
    lod_score_vecs(x1,x2)
982

    
983
R: nm
984

    
985
nm
986
--
987

    
988
Description
989
~~~~~~~~~~~
990

    
991
It provides a set of useful functions allowing to perform quantitative
992
analysis of nucleosomal epigenome.
993

    
994
Details
995
~~~~~~~
996

    
997
+---------------+---------------------------------------------------+
998
| Package:      | nucleominer                                       |
999
+---------------+---------------------------------------------------+
1000
| Maintainer:   | Florent Chuffart <florent.chuffart@ens-lyon.fr>   |
1001
+---------------+---------------------------------------------------+
1002
| Author:       | Florent Chuffart                                  |
1003
+---------------+---------------------------------------------------+
1004
| Version:      | 2.3.1                                             |
1005
+---------------+---------------------------------------------------+
1006
| License:      | CeCILL                                            |
1007
+---------------+---------------------------------------------------+
1008
| Title:        | nm                                                |
1009
+---------------+---------------------------------------------------+
1010
| Depends:      | seqinr, plotrix, DESeq, cachecache                |
1011
+---------------+---------------------------------------------------+
1012

    
1013
Author(s)
1014
~~~~~~~~~
1015

    
1016
Florent Chuffart
1017

    
1018
R: Performaing ANOVAs
1019

    
1020
Performaing ANOVAs
1021
------------------
1022

    
1023
Description
1024
~~~~~~~~~~~
1025

    
1026
Counts reads and Performs ANOVAS for each common nucleosomes involved.
1027

    
1028
Usage
1029
~~~~~
1030

    
1031
::
1032

    
1033
    perform_anovas(replicates, aligned_inter_strain_nucs, inputs_name = "Mnase_Seq", 
1034
        plot_anova_boxes = FALSE)
1035

    
1036
Arguments
1037
~~~~~~~~~
1038

    
1039
``replicates``
1040

    
1041
Set of replicates, each replicate is a list of samples (ideally 3). Each
1042
sample is a list like *sample = list(id=..., marker=..., strain=...,
1043
roi=..., inputs=..., outputs=...)* with *roi = list(name=..., begin=...,
1044
end=..., chr=..., genome=...)*. In the *perform\_anovas* contexte, we
1045
need 4 replicates (4 \* (3 samples)): 2 strains \* (1 marker + 1 input
1046
(Mnase\_Seq)).
1047

    
1048
``aligned_inter_strain_nucs``
1049

    
1050
List of common nucleosomes.
1051

    
1052
``inputs_name``
1053

    
1054
Name of the input.
1055

    
1056
``plot_anova_boxes``
1057

    
1058
Plot (or not) boxplot for each nuc.
1059

    
1060
Value
1061
~~~~~
1062

    
1063
Returns ANOVA results and comunted reads.
1064

    
1065
Author(s)
1066
~~~~~~~~~
1067

    
1068
Florent Chuffart
1069

    
1070
R: Plot the distribution of reads.
1071

    
1072
Plot the distribution of reads.
1073
-------------------------------
1074

    
1075
Description
1076
~~~~~~~~~~~
1077

    
1078
This fuxntion use the deseq nomalization feature to compare
1079
qualitatively the distribution.
1080

    
1081
Usage
1082
~~~~~
1083

    
1084
::
1085

    
1086
    plot_dist_samples(strain, marker, res, all_samples, NEWPLOT = TRUE)
1087

    
1088
Arguments
1089
~~~~~~~~~
1090

    
1091
``strain``
1092

    
1093
The strain to considere.
1094

    
1095
``marker``
1096

    
1097
The marker to considere.
1098

    
1099
``res``
1100

    
1101
Data
1102

    
1103
``all_samples``
1104

    
1105
Global list of samples.
1106

    
1107
``NEWPLOT``
1108

    
1109
If FALSE the curve will be add to the current plot.
1110

    
1111
Author(s)
1112
~~~~~~~~~
1113

    
1114
Florent Chuffart
1115

    
1116
R: Remove wp nucs from common nucs list.
1117

    
1118
Remove wp nucs from common nucs list.
1119
-------------------------------------
1120

    
1121
Description
1122
~~~~~~~~~~~
1123

    
1124
It is based on common wp nucs index on nucs and region.
1125

    
1126
Usage
1127
~~~~~
1128

    
1129
::
1130

    
1131
    remove_aligned_wp(strain_maps, roi_index, tmp_common_nucs, strain)
1132

    
1133
Arguments
1134
~~~~~~~~~
1135

    
1136
``strain_maps``
1137

    
1138
Nuc maps.
1139

    
1140
``roi_index``
1141

    
1142
The region of interest index.
1143

    
1144
``tmp_common_nucs``
1145

    
1146
the list of wp nucs.
1147

    
1148
``strain``
1149

    
1150
The strain to consider.
1151

    
1152
Author(s)
1153
~~~~~~~~~
1154

    
1155
Florent Chuffart
1156

    
1157
R: sign from strand
1158

    
1159
sign from strand
1160
----------------
1161

    
1162
Description
1163
~~~~~~~~~~~
1164

    
1165
Get the sign of strand
1166

    
1167
Usage
1168
~~~~~
1169

    
1170
::
1171

    
1172
    sign_from_strand(strands)
1173

    
1174
Arguments
1175
~~~~~~~~~
1176

    
1177
+---------------+----+
1178
| ``strands``   |    |
1179
+---------------+----+
1180

    
1181
Value
1182
~~~~~
1183

    
1184
If strand in forward then returns 1 else returns -1
1185

    
1186
Author(s)
1187
~~~~~~~~~
1188

    
1189
Florent Chuffart
1190

    
1191
R: Substract to a list of regions an other list of regions that...
1192

    
1193
Substract to a list of regions an other list of regions that intersect it.
1194
--------------------------------------------------------------------------
1195

    
1196
Description
1197
~~~~~~~~~~~
1198

    
1199
This fucntion embed a recursive part. It occurs when a substracted
1200
region split an original region on two.
1201

    
1202
Usage
1203
~~~~~
1204

    
1205
::
1206

    
1207
    substract_region(region1, region2)
1208

    
1209
Arguments
1210
~~~~~~~~~
1211

    
1212
``region1``
1213

    
1214
Original regions.
1215

    
1216
``region2``
1217

    
1218
Regions to substract.
1219

    
1220
Author(s)
1221
~~~~~~~~~
1222

    
1223
Florent Chuffart
1224

    
1225
R: Switch a pairlist
1226

    
1227
Switch a pairlist
1228
-----------------
1229

    
1230
Description
1231
~~~~~~~~~~~
1232

    
1233
Take a pairlist key:value and return the switched pairlist value:key.
1234

    
1235
Usage
1236
~~~~~
1237

    
1238
::
1239

    
1240
    switch_pairlist(l)
1241

    
1242
Arguments
1243
~~~~~~~~~
1244

    
1245
``l``
1246

    
1247
The pairlist to switch.
1248

    
1249
Value
1250
~~~~~
1251

    
1252
The switched pairlist.
1253

    
1254
Author(s)
1255
~~~~~~~~~
1256

    
1257
Florent Chuffart
1258

    
1259
Examples
1260
~~~~~~~~
1261

    
1262
::
1263

    
1264
    l = list(key1 = "value1", key2 = "value2")
1265
    print(switch_pairlist(l))
1266

    
1267
R: Translate a list of regions from a strain ref to another.
1268

    
1269
Translate a list of regions from a strain ref to another.
1270
---------------------------------------------------------
1271

    
1272
Description
1273
~~~~~~~~~~~
1274

    
1275
This function is an eloborated call to translate\_roi.
1276

    
1277
Usage
1278
~~~~~
1279

    
1280
::
1281

    
1282
    translate_regions(regions, combi, roi_index, config = NULL, roi)
1283

    
1284
Arguments
1285
~~~~~~~~~
1286

    
1287
``regions``
1288

    
1289
Regions to be translated.
1290

    
1291
``combi``
1292

    
1293
Combination of strains.
1294

    
1295
``roi_index``
1296

    
1297
The region of interest index.
1298

    
1299
``config``
1300

    
1301
GLOBAL config variable
1302

    
1303
``roi``
1304

    
1305
The region of interest.
1306

    
1307
Author(s)
1308
~~~~~~~~~
1309

    
1310
Florent Chuffart
1311

    
1312
R: Translate coords of a genome region.
1313

    
1314
Translate coords of a genome region.
1315
------------------------------------
1316

    
1317
Description
1318
~~~~~~~~~~~
1319

    
1320
This function is used in the examples, usualy you have to define your
1321
own translation function and overwrite this one using *unlockBinding*
1322
features. Please, refer to the example.
1323

    
1324
Usage
1325
~~~~~
1326

    
1327
::
1328

    
1329
    translate_roi(roi, strain2, config = NULL, big_roi = NULL)
1330

    
1331
Arguments
1332
~~~~~~~~~
1333

    
1334
``roi``
1335

    
1336
Original genome region of interest.
1337

    
1338
``strain2``
1339

    
1340
The strain in wich you want the genome region of interest.
1341

    
1342
``config``
1343

    
1344
GLOBAL config variable
1345

    
1346
``big_roi``
1347

    
1348
A largest region than roi use to filter c2c if it is needed.
1349

    
1350
Author(s)
1351
~~~~~~~~~
1352

    
1353
Florent Chuffart
1354

    
1355
Examples
1356
~~~~~~~~
1357

    
1358
::
1359

    
1360
    # Define new translate_roi function...
1361
    translate_roi = function(roi, strain2, config) {
1362
        strain1 = roi$strain_ref
1363
        if (strain1 == strain2) {
1364
            return(roi)
1365
        } else {
1366
          stop("Here is my new translate_roi function...")      
1367
        }   
1368
    }
1369
    # Binding it by uncomment follwing lines.
1370
    # unlockBinding("translate_roi", as.environment("package:nm"))
1371
    # unlockBinding("translate_roi", getNamespace("nm"))
1372
    # assign("translate_roi", translate_roi, "package:nm")
1373
    # assign("translate_roi", translate_roi, getNamespace("nm"))
1374
    # lockBinding("translate_roi", getNamespace("nm"))
1375
    # lockBinding("translate_roi", as.environment("package:nm"))    
1376

    
1377
R: Aggregate regions that intersect themnselves.
1378

    
1379
Aggregate regions that intersect themnselves.
1380
---------------------------------------------
1381

    
1382
Description
1383
~~~~~~~~~~~
1384

    
1385
This function is based on sort of lower bounds to detect regions that
1386
intersect. We compare lower bound and upper bound of the porevious item.
1387
This function embed a while loop and break break regions list become
1388
stable.
1389

    
1390
Usage
1391
~~~~~
1392

    
1393
::
1394

    
1395
    union_regions(regions)
1396

    
1397
Arguments
1398
~~~~~~~~~
1399

    
1400
``regions``
1401

    
1402
The Regions to be aggregated
1403

    
1404
Author(s)
1405
~~~~~~~~~
1406

    
1407
Florent Chuffart
1408

    
1409
R: Watching analysis of samples
1410

    
1411
Watching analysis of samples
1412
----------------------------
1413

    
1414
Description
1415
~~~~~~~~~~~
1416

    
1417
This function allows to view analysis for a particuler region of the
1418
genome.
1419

    
1420
Usage
1421
~~~~~
1422

    
1423
::
1424

    
1425
    watch_samples(replicates, read_length, plot_ref_genome = TRUE, 
1426
        plot_arrow_raw_reads = TRUE, plot_arrow_nuc_reads = TRUE, 
1427
        plot_squared_reads = TRUE, plot_coverage = FALSE, plot_gaussian_reads = TRUE, 
1428
        plot_gaussian_unified_reads = TRUE, plot_ellipse_nucs = TRUE, 
1429
        plot_wp_nucs = TRUE, plot_wp_nuc_model = TRUE, plot_common_nucs = TRUE, 
1430
        plot_anovas = FALSE, plot_anova_boxes = FALSE, plot_wp_nucs_4_nonmnase = FALSE, 
1431
        aggregated_intra_strain_nucs = NULL, aligned_inter_strain_nucs = NULL, 
1432
        height = 10, config = NULL)
1433

    
1434
Arguments
1435
~~~~~~~~~
1436

    
1437
``replicates``
1438

    
1439
replicates under the form...
1440

    
1441
``read_length``
1442

    
1443
length of the reads
1444

    
1445
``plot_ref_genome``
1446

    
1447
Plot (or not) reference genome.
1448

    
1449
``plot_arrow_raw_reads``
1450

    
1451
Plot (or not) arrows for raw reads.
1452

    
1453
``plot_arrow_nuc_reads``
1454

    
1455
Plot (or not) arrows for reads aasiocied to a nucleosome.
1456

    
1457
``plot_squared_reads``
1458

    
1459
Plot (or not) reads in the square fashion.
1460

    
1461
``plot_coverage``
1462

    
1463
Plot (or not) reads in the covergae fashion. fashion.
1464

    
1465
``plot_gaussian_reads``
1466

    
1467
Plot (or not) gaussian model of a F anf R reads.
1468

    
1469
``plot_gaussian_unified_reads``
1470

    
1471
Plot (or not) gaussian model of a nuc.
1472

    
1473
``plot_ellipse_nucs``
1474

    
1475
Plot (or not) ellipse for a nuc.
1476

    
1477
``plot_wp_nucs``
1478

    
1479
Plot (or not) cluster of nucs
1480

    
1481
``plot_wp_nuc_model``
1482

    
1483
Plot (or not) gaussian model for a cluster of nucs
1484

    
1485
``plot_common_nucs``
1486

    
1487
Plot (or not) aligned reads.
1488

    
1489
``plot_anovas``
1490

    
1491
Plot (or not) scatter for each nuc.
1492

    
1493
``plot_anova_boxes``
1494

    
1495
Plot (or not) boxplot for each nuc.
1496

    
1497
``plot_wp_nucs_4_nonmnase``
1498

    
1499
Plot (or not) clusters for non inputs samples.
1500

    
1501
``aggregated_intra_strain_nucs``
1502

    
1503
list of aggregated intra strain nucs. If NULL, it will be computed.
1504

    
1505
``aligned_inter_strain_nucs``
1506

    
1507
list of aligned inter strain nucs. If NULL, it will be computed.
1508

    
1509
``height``
1510

    
1511
Number of reads in per million read for each sample, graphical parametre
1512
for the y axis.
1513

    
1514
``config``
1515

    
1516
GLOBAL config variable
1517

    
1518
Author(s)
1519
~~~~~~~~~
1520

    
1521
Florent Chuffart