root / README_LSM.txt @ 3
Historique | Voir | Annoter | Télécharger (3,75 ko)
1 |
---------------------------------------------------------------------- |
---|---|
2 |
- lsm3d - |
3 |
Tools for segmenting 3D images of plant tissues |
4 |
at multiple scales using the level set method¶ |
5 |
---------------------------------------------------------------------- |
6 |
Copyright 2016 ENS de Lyon, see accompanying file LICENSE.txt |
7 |
|
8 |
Authors : |
9 |
Typhaine Moreau, Annamaria Kiss <annamaria.kiss@ens-lyon.fr.fr> |
10 |
(Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France) |
11 |
---------------------------------------------------------------------- |
12 |
|
13 |
The "lsm3d" tools |
14 |
----------------- |
15 |
- lsm_contour --> detects the outer surface of the tissue |
16 |
- lsm_cells --> used to cellular segmentation or nuclei detection |
17 |
|
18 |
Dependencies |
19 |
------------- |
20 |
The levelset tools make use of the CImg image processing C++ library, which in turn needs Xlib library. |
21 |
Furthermore, the lsm_cells tool is parallelized using OpenMP. |
22 |
|
23 |
In particular, if you do not have Xlib on your computer, you may add it: |
24 |
- on Ubuntu: |
25 |
sudo apt-get install libx11-dev |
26 |
- on MacOS X: |
27 |
install xQuartz from www.xquartz.org |
28 |
|
29 |
Download |
30 |
-------- |
31 |
In a terminal go to the directory where you wish to download and install the tool |
32 |
cd Path_to_your_directory |
33 |
svn checkout http://forge.cbp.ens-lyon.fr/svn/lsm3d |
34 |
|
35 |
Compile |
36 |
-------- |
37 |
cd lsm3d |
38 |
./lsm3d_compile.sh |
39 |
|
40 |
Troubleshooting if problems with compilation : |
41 |
In lsm3d_compile.sh |
42 |
- you might have to choose an appropriate compiler, which supports OpenMP. |
43 |
- you might need to precise the location of the X11 library in the compilation options. |
44 |
|
45 |
|
46 |
The following binaries will be generated in the bin directory : |
47 |
-------------------------------------------------------------- |
48 |
- lsm_contour --> detects the outer surface of the tissue |
49 |
- lsm_cells --> used to cellular segmentation or nuclei detection |
50 |
|
51 |
|
52 |
**** lsm_contour --> detects the outer surface of the tissue |
53 |
------------------------------------------------------- |
54 |
|
55 |
Usage : lsm_contour img t_up t_down a b smooth perUp perDown |
56 |
Examples for parameter values: |
57 |
------------------------------ |
58 |
img : grayscale image of cells, (.inr or .inr.gz) |
59 |
Upper threshold : t_up = 20 |
60 |
Down threshold : t_down = 5 |
61 |
Area term : a = 0 (0.5, 1) |
62 |
Curvature term : b = 0 (1) |
63 |
Gaussian filter : smooth = 1 (0, if image already filtered) |
64 |
Stop criteria : the contour evolution is in [perDown,perUp] for 10 consecutive iterations |
65 |
perUp = 0.002, perDown = -0.002 |
66 |
|
67 |
Test : |
68 |
------ |
69 |
lsm_detect_contour sample-stack.inr.gz 20 10 0 0 1 0.002 -0.002 |
70 |
|
71 |
|
72 |
**** lsm_cells --> for cellular segmentation or nuclei detection |
73 |
------------------------------------------------------------- |
74 |
|
75 |
Usage : lsm_cells img img_wat img_contour erosion [a b smooth lsm_type] |
76 |
----------------- |
77 |
img : grayscale image of cells, (.inr or .inr.gz) |
78 |
img_wat : image of seeds, (.inr or .inr.gz) |
79 |
img_contour : mask, where cells do not evolve, (.inr or .inr.gz) |
80 |
if 'None', then cells can evolve on the whole image |
81 |
erosion : amount of erosion of seeds for initialisation (uint8) --> -2, 0, 2 |
82 |
if 0, then no erosion or dilation |
83 |
if negative, then a dilation is performed |
84 |
a : area term (float) --> 0 or 0.5 or 1 (the default is 0.5) |
85 |
if negative, the object retracts |
86 |
if positive, the object inflates |
87 |
b : curvature term (float) --> 0 or 1 (the default is 0) |
88 |
gamma : scale parameter (float>0) --> 0.5 or 1 (the default is 1) |
89 |
smooth : gaussian blur to apply to the image (int) --> 0 or 1 (the default is 0) |
90 |
lsm_type : image, gradient or hessien based evolution --> 'i', 'g' or 'h' (the default is g) |
91 |
|
92 |
Test : |
93 |
------ |
94 |
lsm_cells sample-satck.inr.gz sample-satck-wat.inr.gz 'None' 2 0.3 0 0.2 1 'h' |
95 |
or |
96 |
lsm_cells sample-satck.inr.gz sample-satck-wat.inr.gz sample-satck_LSMcont20-10a0b0s1/sample-satck_LSMcont20-10a0b0s1.inr.gz 2 0.3 0 0.2 1 'h' |
97 |
|
98 |
|