Révision 31 README_LSM.txt
README_LSM.txt (revision 31) | ||
---|---|---|
7 | 7 |
Typhaine Moreau, Annamaria Kiss (Laboratoire RDP, ENS Lyon) |
8 | 8 |
---------------------------------------------------------------------- |
9 | 9 |
|
10 |
The "lsm3d" tools |
|
11 |
----------------- |
|
12 |
- lsm_contour --> detects the outer surface of the tissue |
|
13 |
- lsm_cells --> used to cellular segmentation or nuclei detection |
|
14 |
|
|
15 |
Dependencies |
|
16 |
------------- |
|
17 |
The levelset tools make use of the CImg image processing C++ library, which in turn needs Xlib library. |
|
18 |
Furthermore, the lsm_cells tool is parallelized using OpenMP. |
|
19 |
|
|
20 |
In particular, if you do not have Xlib on your computer, you may add it: |
|
21 |
- on Ubuntu: |
|
22 |
sudo apt-get install libx11-dev |
|
23 |
- on MacOS X: |
|
24 |
install xQuartz from www.xquartz.org |
|
25 |
|
|
10 | 26 |
Download |
11 | 27 |
-------- |
28 |
In a terminal go to the directory where you wish to download and install the tool |
|
29 |
cd Path_to_your_directory |
|
12 | 30 |
svn --username $USER checkout http://forge.cbp.ens-lyon.fr/svn/levelsetmethod/lsm3D |
13 | 31 |
|
14 | 32 |
Compile |
... | ... | |
16 | 34 |
cd lsm3D |
17 | 35 |
./lsm3D_compile.sh |
18 | 36 |
|
37 |
Troubleshooting if problems with compilation : |
|
38 |
In lsm3D_compile.sh |
|
39 |
- you might have to choose an appropriate compiler, which supports OpenMP. |
|
40 |
- you might need to precise the location of the X11 library in the compilation options. |
|
19 | 41 |
|
42 |
|
|
20 | 43 |
The following binaries will be generated in the bin directory : |
21 | 44 |
-------------------------------------------------------------- |
22 | 45 |
- lsm_contour --> detects the outer surface of the tissue |
... | ... | |
26 | 49 |
**** lsm_contour --> detects the outer surface of the tissue |
27 | 50 |
------------------------------------------------------- |
28 | 51 |
|
29 |
Usage : lsm_detect_contour img t_up t_down a b smooth perUp perDown
|
|
52 |
Usage : lsm_contour img t_up t_down a b smooth perUp perDown |
|
30 | 53 |
Examples for parameter values: |
31 | 54 |
------------------------------ |
32 | 55 |
img : grayscale image of cells, (.inr or .inr.gz) |
... | ... | |
40 | 63 |
|
41 | 64 |
Test : |
42 | 65 |
------ |
43 |
lsm_detect_contour t3_cut.inr.gz 20 10 0 0 1 0.002 -0.002
|
|
66 |
lsm_detect_contour sample-stack.inr.gz 20 10 0 0 1 0.002 -0.002
|
|
44 | 67 |
|
45 | 68 |
|
46 | 69 |
**** lsm_cells --> for cellular segmentation or nuclei detection |
... | ... | |
65 | 88 |
|
66 | 89 |
Test : |
67 | 90 |
------ |
68 |
lsm_cells t3_cut.inr.gz t3_cut_wat.inr.gz t3_cut_LSMcont20-10a0b0s1/t3_cut_LSMcont20-10a0b0s1.inr.gz 2 0.3 0 0.2 1 'h' |
|
91 |
lsm_cells sample-satck.inr.gz sample-satck-wat.inr.gz 'None' 2 0.3 0 0.2 1 'h' |
|
92 |
or |
|
93 |
lsm_cells sample-satck.inr.gz sample-satck-wat.inr.gz sample-satck_LSMcont20-10a0b0s1/sample-satck_LSMcont20-10a0b0s1.inr.gz 2 0.3 0 0.2 1 'h' |
|
69 | 94 |
|
95 |
|
Formats disponibles : Unified diff