Révision 268 CSL17/tech-report/soundness.tex
soundness.tex (revision 268) | ||
---|---|---|
5 | 5 |
|
6 | 6 |
\begin{theorem} |
7 | 7 |
\label{thm:soundness} |
8 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
|
|
8 |
If $\arith^i$ proves $\forall \vec u^\normal . \exists y^\safe . A(\vec u ; y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; )$ such that $\Nat \models A(\vec u ; f(\vec u ; ))$.
|
|
9 | 9 |
\end{theorem} |
10 | 10 |
|
11 | 11 |
|
... | ... | |
178 | 178 |
% \ \implies \ |
179 | 179 |
% \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
180 | 180 |
\begin{array}{rl} |
181 |
& \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\ |
|
181 |
& \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A |
|
182 |
%\mode b_A(l) |
|
183 |
) =1 \\ |
|
182 | 184 |
\noalign{\medskip} |
183 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p^\pi(l))) = 1 |
|
185 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(l, |
|
186 |
( |
|
187 |
\vec u ; \vec x |
|
188 |
) \mode l |
|
189 |
, \vec w \mode p^\pi(l))) = 1 |
|
184 | 190 |
\end{array} |
185 | 191 |
\] |
186 | 192 |
for some polynomial $p^\pi$. |
... | ... | |
190 | 196 |
|
191 | 197 |
|
192 | 198 |
|
193 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec f^\pi ((\vec u ; \vec x )\mode l, \vec w \mode p^\pi(l)) )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
199 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec f^\pi ( |
|
200 |
l,( |
|
201 |
\vec u ; \vec x |
|
202 |
)\mode l |
|
203 |
, \vec w \mode p^\pi(l)) )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
194 | 204 |
Also let us call $p^\pi$ the \emph{modulus} of $f^\pi$ with respect to $l$. |
195 | 205 |
|
196 |
\begin{proof} |
|
206 |
\begin{proof}[Proof sketch]
|
|
197 | 207 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
198 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
|
208 |
We define the function $f^\pi$ inductively, by considering the various final rules of $\pi$.
|
|
199 | 209 |
|
200 | 210 |
|
201 | 211 |
\paragraph*{Negation} |
... | ... | |
205 | 215 |
\] |
206 | 216 |
Notice that, since $\pi$ is in De Morgan form, we have that $A$ is atomic ($s\leq t$) and so, in particular, $\Pi^\safe_{i-1}$. |
207 | 217 |
So we can simply set the witness for both $A$ and $\cnot A$ to $0$. |
208 |
Namely, if $\vec f (\vec u ; \vec x , \vec w , w )$ is obtained by the inductive hypothesis, then we may set $f^\pi_B ( \vec u ; \vec x , \vec w) \dfn f_B (\vec u ;\vec x , \vec w , 0)$ for $B\in \Delta$, and $f^\pi_A (\vec u ; \vec x , \vec w) \dfn 0$.
|
|
218 |
Namely, if $\vec f (l,\vec u ; \vec x , \vec w , w )$ is obtained by the inductive hypothesis, then we may set $f^\pi_B (l, \vec u ; \vec x , \vec w) \dfn f_B (l,\vec u ;\vec x , \vec w , 0)$ for $B\in \Delta$, and $f^\pi_A (\vec u ; \vec x , \vec w) \dfn 0$.
|
|
209 | 219 |
The modulus $p^\pi$ remains the same as that of the inductive hypothesis. |
210 | 220 |
|
211 | 221 |
Left negation is similar, relying on a dummy argument. |
... | ... | |
217 | 227 |
\[ |
218 | 228 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
219 | 229 |
\] |
220 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
|
230 |
By inductive hypothesis we have functions $\vec f (l,\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
|
|
221 | 231 |
\[ |
222 | 232 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
223 | 233 |
\quad \implies \quad |
224 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
|
234 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( |
|
235 |
l, ( |
|
236 |
\vec u ; \vec x |
|
237 |
) \mode l |
|
238 |
, (w_A , w_B , \vec w) \mode p(l) )) |
|
225 | 239 |
\] |
226 | 240 |
for some polynomial $p$. |
227 | 241 |
% |
228 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $|p^\pi| = O(|p|)$.
|
|
242 |
We define $\vec f^\pi (l,\vec u ; \vec x , w , \vec w) \dfn \vec f (l,\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $|p^\pi| = O(|p|)$.
|
|
229 | 243 |
|
230 |
Right disjunction step:
|
|
244 |
Suppose $\pi$ ends with a right disjunction step:
|
|
231 | 245 |
\[ |
232 | 246 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
233 | 247 |
\] |
234 | 248 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
235 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
|
|
249 |
Let $\vec f , f_A, f_B$ be obtained by the inductive hypothesis so that:
|
|
236 | 250 |
\[ |
237 | 251 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
238 | 252 |
\quad \implies \quad |
239 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
253 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , (\vec f , f_A , f_B) ( |
|
254 |
l,( |
|
255 |
\vec u ; \vec x |
|
256 |
) \mode l |
|
257 |
, \vec w \mode p(l) )) |
|
240 | 258 |
\] |
241 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
242 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
259 |
$\vec f^\pi_\Delta$ is defined the same as $\vec f$. |
|
260 |
Let $q(l)$ be an upper bound for $f_A , f_B$ and define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
261 |
$p^\pi$ is obtained from $p$, $q$ and the bounding polynomial for pairing. |
|
243 | 262 |
|
244 | 263 |
The other logical cases use a similar argument. |
245 | 264 |
|
246 | 265 |
|
247 | 266 |
\paragraph*{Quantifiers} |
248 |
If $\pi$ ends with a sharply bounded quantifier step, then we use a similar argument to that for logical rules. |
|
249 |
For instance, suppose $\pi$ ends with a $\rigrul{|\forall|}$: |
|
250 |
\[ |
|
251 |
\vlinf{\rigrul{|\forall|}}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
252 |
\] |
|
253 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
254 |
\[ |
|
255 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
256 |
\quad \implies \quad |
|
257 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
258 |
\] |
|
259 |
with $|f|\leq q(|l|)$. |
|
267 |
Sharply bounded quantifier steps use a similar argument to the logical rules above, only requiring a larger modulus. |
|
260 | 268 |
|
261 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
262 | 269 |
|
263 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
270 |
% If $\pi$ ends with a sharply bounded quantifier step, then we use a similar argument to that for logical rules. |
|
271 |
% For instance, suppose $\pi$ ends with a $\rigrul{|\forall|}$: |
|
272 |
% \[ |
|
273 |
% \vlinf{\rigrul{|\forall|}}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
274 |
% \] |
|
275 |
% By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
276 |
% \[ |
|
277 |
% \Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
278 |
% \quad \implies \quad |
|
279 |
% \Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
280 |
% \] |
|
281 |
% with $|f|\leq q(|l|)$. |
|
282 |
% |
|
283 |
% By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
284 |
% |
|
285 |
% We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
286 |
% |
|
287 |
% \anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
264 | 288 |
|
265 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
266 |
|
|
267 |
Right existential: |
|
289 |
Suppose $\pi$ ends with a right existential step:\footnote{ Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.} |
|
268 | 290 |
\[ |
269 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
|
291 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t (\vec u ; \vec x))}
|
|
270 | 292 |
\] |
271 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
|
293 |
By the inductive hypothesis we have functions $\vec f , f$ such that: |
|
294 |
\[ |
|
295 |
\Wit{\vec u ;\vec x}{\Gamma} ( l , \vec u ; \vec x , \vec w ) |
|
296 |
\quad \implies \quad |
|
297 |
\Wit{\vec u ; \vec x}{\Delta, A(t)} ( l, \vec u ; \vec x , (\vec f , f) (l, (\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
298 |
\] |
|
299 |
We let $\vec f^\pi_\Delta \dfn \vec f$ and define $f^\pi_{\exists x . A } ( l, \vec u ; \vec x , \vec w ) \dfn \pair{p(l) + t(\vec l ; \vec l)}{f(l, \vec u ; \vec x , \vec w)}{t(\vec u ; \vec x)}$. |
|
300 |
$p^\pi$ is hence obtained from $t$, $p$ and the bounding polynomial for pairing. |
|
272 | 301 |
|
302 |
Other quantifier steps are routine. |
|
273 | 303 |
|
274 | 304 |
\paragraph*{Contraction} |
275 | 305 |
Left contraction simply duplicates an argument,\footnote{We ignore here the cases when contraction is on a $\normal (u) $ or $\safe (x)$ formula, treating these formulae form as forming a set rather than a multiset.} whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
276 | 306 |
This is the reason why we need to the witness function encoded itself into $\mubc$ rather than simply using a predicate. |
277 |
|
|
278 |
For the sake of example, suppose $\pi$ ends with a right contraction step: |
|
307 |
Suppose $\pi$ ends with a right contraction step: |
|
279 | 308 |
\[ |
280 | 309 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
281 | 310 |
\] |
282 | 311 |
By the inductive hypothesis we have functions $\vec f_\Delta , f_0, f_1$ corresponding to the RHS $\Delta , A ,A$. |
283 | 312 |
We may define $\vec f^\pi_\Delta = \vec f_\Delta$ and: |
284 | 313 |
\[ |
285 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
|
314 |
f^\pi_A (l, \vec u ; \vec x , \vec w )
|
|
286 | 315 |
\quad \dfn \quad |
287 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) )
|
|
316 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(l,\vec u ; \vec x , \vec w) ) , f_1(l,\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) )
|
|
288 | 317 |
\] |
289 | 318 |
|
290 | 319 |
|
291 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
|
320 |
% \anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
|
|
292 | 321 |
\paragraph*{Induction} |
293 |
Corresponds to safe recursion on notation. |
|
294 |
Suppose final step is (wlog): |
|
322 |
Suppose $\pi$ ends with a polynomial induction step: |
|
295 | 323 |
\[ |
296 | 324 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
297 | 325 |
\] |
298 |
\anupam{need to say in normal form part that can assume induction of this form} |
|
299 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
|
|
300 |
|
|
326 |
% \anupam{need to say in normal form part that can assume induction of this form}
|
|
327 |
For simplicity we will assume $\Delta $ is empty.\footnote{Note that a proof can always be put into this form by the right disjunction rules. The criterion on logical complexity for typed variable normal form proofs is preserved due to free-cut freeness.}
|
|
328 |
% |
|
301 | 329 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
302 | 330 |
\[ |
303 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
|
331 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w , w)
|
|
304 | 332 |
\quad \implies \quad |
305 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
|
|
333 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i (l,(u , \vec u ; \vec x ) \mode l , (\vec w , w) \mode p(l) ) )
|
|
306 | 334 |
\] |
307 |
First let us define $ f$ as follows: |
|
335 |
First let us define $ f$ by safe recursion as follows:
|
|
308 | 336 |
\[ |
309 | 337 |
\begin{array}{rcl} |
310 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
|
311 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
|
312 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
|
|
338 |
f (l,0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\
|
|
339 |
f(l, \succ i u , \vec u ; \vec x , \vec w, w) & \dfn &
|
|
340 |
h_i (l,u , \vec u ; \vec x , \vec w , f(l,u , \vec u ; \vec x , \vec w , w ))
|
|
313 | 341 |
\end{array} |
314 | 342 |
\] |
315 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
|
316 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
|
317 |
|
|
343 |
% where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
|
344 |
% \anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
|
318 | 345 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
346 |
It suffices to let $|p^\pi| = O(|p|^2)$. |
|
319 | 347 |
|
320 | 348 |
\paragraph*{Cut} |
321 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
|
|
322 |
Otherwise it is a `raisecut':
|
|
349 |
If $\pi$ ends with a cut on an induction formula, which is $\Sigma^\safe_i$, then $f^\pi$ is obtained from the inductive hypothesis by simply substituting already defined functions into a safe position.
|
|
350 |
The other possibility is that $\pi$ ends with a `raisecut':
|
|
323 | 351 |
\[ |
324 | 352 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
325 | 353 |
\] |
326 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
|
|
354 |
In this case, by the inductive hypothesis, we have functions $f(l,\vec u ; )$ from the left premiss and $\vec g (l,u, \vec v ; \vec x , w , \vec w )$ from the right premiss, so we may define:
|
|
327 | 355 |
\[ |
328 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
|
356 |
\vec f^\pi ( l , \vec u , \vec v ; \vec x , \vec w )
|
|
329 | 357 |
\quad \dfn \quad |
330 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
|
|
358 |
\vec g ( l, \beta (1 ; f(l,\vec u ;) ) , \vec v ; \vec x , \beta(0;f(l,\vec u ;)) , \vec w )
|
|
331 | 359 |
\] |
360 |
Again, $p^\pi$ is obtained from $p$ and the bounding polynomial for pairing. |
|
332 | 361 |
\end{proof} |
333 | 362 |
|
334 | 363 |
|
... | ... | |
341 | 370 |
\begin{proof} |
342 | 371 |
[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
343 | 372 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form. |
344 |
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$.
|
|
345 |
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true.
|
|
346 |
Now, since all $\vec u$ are normal, we may simply set $l$ to have a longer length than all of these arguments, so the function $f(\vec u;) \dfn \beta (q(\sum \vec u), 1 ; f(\vec u \mode \sum \vec u;) ))$ suffices to finish the proof.
|
|
373 |
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f^\pi(l,\vec u \mode l;)) =1$.
|
|
374 |
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(l, \vec u \mode l;) ))$ is true, where $q(l)$ is an upper bound for $f^\pi (l, \vec u \mode l ; )$.
|
|
375 |
Now, since all $\vec u$ are normal, we may simply set $l$ to have a longer length than all of these arguments, so the function $f(\vec u;) \dfn \beta (q(\sum \vec u), 1 ; f(\vec u \mode \sum \vec u;) ))$ indeed witnesses the required existential.
|
|
347 | 376 |
\end{proof} |
Formats disponibles : Unified diff