Révision 267 CSL17/tech-report/soundness.tex
soundness.tex (revision 267) | ||
---|---|---|
47 | 47 |
In the presence of a compatible sorting, we may easily define functions that \emph{evaluate} safe formulae in $\mubc$: |
48 | 48 |
|
49 | 49 |
|
50 |
\begin{proposition} |
|
51 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
|
52 |
\end{proposition} |
|
53 |
|
|
54 | 50 |
\begin{definition} |
55 | 51 |
[Length bounded characteristic functions] |
56 | 52 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
... | ... | |
85 | 81 |
\end{definition} |
86 | 82 |
|
87 | 83 |
|
84 |
\begin{proposition} |
|
85 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, |
|
86 |
$\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ is in $\mubci{i}$ and computes the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
|
87 |
\end{proposition} |
|
88 |
|
|
89 |
|
|
90 |
|
|
88 | 91 |
We will use the programs $\charfn{}{}$ in the witness functions we define below. |
89 | 92 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$. |
90 | 93 |
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'. |
... | ... | |
96 | 99 |
For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i-1})$ and its \emph{bounding polynomial} $b_A (l)$ as follows: |
97 | 100 |
\begin{itemize} |
98 | 101 |
\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$ and we set $b_A (l) = 1$. |
99 |
\item If $A$ is $B \cor C$ then we may set $b_A = O(b_B + b_C)$ and define $ \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) )$.
|
|
102 |
\item If $A$ is $B \cor C$ then we may set $|b_A| = O(|b_B| + |b_C|)$ and define $ \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) )$.
|
|
100 | 103 |
% \[ |
101 | 104 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
102 | 105 |
% \quad \dfn \quad |
... | ... | |
121 | 124 |
%appealing to Lemma~\ref{lem:sharply-bounded-recursion}, |
122 | 125 |
and |
123 | 126 |
we set |
124 |
$b_A = O(b_{B(t)}^2 )$.
|
|
127 |
$|b_A| = O(|b_{B(t)}|^2 )$.
|
|
125 | 128 |
\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$. |
126 | 129 |
\item If $A$ is $\exists x^\safe . B(x) $ then |
127 | 130 |
\( |
... | ... | |
129 | 132 |
\dfn |
130 | 133 |
\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w )) |
131 | 134 |
\) |
132 |
where $q$ is obtained by the polychecking and bounded minimisation properties, Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation}, for $\wit{\vec u ; \vec x , x}{B(x)}$. |
|
133 |
We may set $b_A = O(b_B + q )$.
|
|
135 |
where $q$ is obtained by the polychecking and bounded minimisation properties,\footnote{Here let us assume that $q$ is formulated as a corresponding quasipolynomial in $l$ as opposed to a polynomial in $|l|$, as in Lemma~\ref{lem:bounded-minimisation}.} Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation}, for $\wit{\vec u ; \vec x , x}{B(x)}$.
|
|
136 |
We may set $|b_A| = O(|b_B | + |q|)$.
|
|
134 | 137 |
\end{itemize} |
135 | 138 |
% \[ |
136 | 139 |
% \begin{array}{rcl} |
... | ... | |
151 | 154 |
\end{definition} |
152 | 155 |
|
153 | 156 |
|
154 |
|
|
157 |
From Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation} we have: |
|
155 | 158 |
\begin{proposition} |
156 | 159 |
\label{prop:wit-rfn} |
157 | 160 |
If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true. |
... | ... | |
177 | 180 |
\begin{array}{rl} |
178 | 181 |
& \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\ |
179 | 182 |
\noalign{\medskip} |
180 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
|
183 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p^\pi(l))) = 1
|
|
181 | 184 |
\end{array} |
182 | 185 |
\] |
183 |
for some polynomial $p$. |
|
186 |
for some polynomial $p^\pi$.
|
|
184 | 187 |
% \anupam{Need $\vec w \mode p(l)$ for some $p$.} |
185 | 188 |
% \anupam{$l$ may occur freely in the programs $f^\pi_B$} |
186 | 189 |
\end{lemma} |
187 | 190 |
|
188 | 191 |
|
189 | 192 |
|
190 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
193 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec f^\pi ((\vec u ; \vec x )\mode l, \vec w \mode p^\pi(l)) )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
194 |
Also let us call $p^\pi$ the \emph{modulus} of $f^\pi$ with respect to $l$. |
|
191 | 195 |
|
192 | 196 |
\begin{proof} |
193 | 197 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
... | ... | |
202 | 206 |
Notice that, since $\pi$ is in De Morgan form, we have that $A$ is atomic ($s\leq t$) and so, in particular, $\Pi^\safe_{i-1}$. |
203 | 207 |
So we can simply set the witness for both $A$ and $\cnot A$ to $0$. |
204 | 208 |
Namely, if $\vec f (\vec u ; \vec x , \vec w , w )$ is obtained by the inductive hypothesis, then we may set $f^\pi_B ( \vec u ; \vec x , \vec w) \dfn f_B (\vec u ;\vec x , \vec w , 0)$ for $B\in \Delta$, and $f^\pi_A (\vec u ; \vec x , \vec w) \dfn 0$. |
205 |
The bounding polynomial remains the same. |
|
209 |
The modulus $p^\pi$ remains the same as that of the inductive hypothesis. |
|
210 |
|
|
211 |
Left negation is similar, relying on a dummy argument. |
|
206 | 212 |
|
207 | 213 |
\paragraph*{Logical rules} |
208 |
Pairing, depairing. Need length-boundedness. |
|
209 |
|
|
210 |
If we have a left conjunction step:
|
|
214 |
% Pairing, depairing. Need length-boundedness.
|
|
215 |
Suppose $\pi$ ends with a |
|
216 |
left conjunction step: |
|
211 | 217 |
\[ |
212 | 218 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
213 | 219 |
\] |
... | ... | |
219 | 225 |
\] |
220 | 226 |
for some polynomial $p$. |
221 | 227 |
% |
222 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
|
|
228 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $|p^\pi| = O(|p|)$.
|
|
223 | 229 |
|
230 |
Right disjunction step: |
|
231 |
\[ |
|
232 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
233 |
\] |
|
234 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
235 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
236 |
\[ |
|
237 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
|
238 |
\quad \implies \quad |
|
239 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
240 |
\] |
|
241 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
242 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
224 | 243 |
|
225 |
Right disjunction step: |
|
226 |
\[ |
|
227 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
228 |
\] |
|
229 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
230 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
231 |
\[ |
|
232 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
|
233 |
\quad \implies \quad |
|
234 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
235 |
\] |
|
236 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
237 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
244 |
The other logical cases use a similar argument. |
|
245 |
|
|
246 |
|
|
238 | 247 |
\paragraph*{Quantifiers} |
239 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
240 |
|
|
241 |
|
|
242 |
|
|
243 |
Sharply bounded quantifiers are generalised versions of logical rules. |
|
248 |
If $\pi$ ends with a sharply bounded quantifier step, then we use a similar argument to that for logical rules. |
|
249 |
For instance, suppose $\pi$ ends with a $\rigrul{|\forall|}$: |
|
244 | 250 |
\[ |
245 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) }
|
|
251 |
\vlinf{\rigrul{|\forall|}}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) }
|
|
246 | 252 |
\] |
247 | 253 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
248 | 254 |
\[ |
... | ... | |
256 | 262 |
|
257 | 263 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
258 | 264 |
|
265 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
259 | 266 |
|
260 | 267 |
Right existential: |
261 | 268 |
\[ |
... | ... | |
265 | 272 |
|
266 | 273 |
|
267 | 274 |
\paragraph*{Contraction} |
268 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
275 |
Left contraction simply duplicates an argument,\footnote{We ignore here the cases when contraction is on a $\normal (u) $ or $\safe (x)$ formula, treating these formulae form as forming a set rather than a multiset.} whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
276 |
This is the reason why we need to the witness function encoded itself into $\mubc$ rather than simply using a predicate. |
|
269 | 277 |
|
278 |
For the sake of example, suppose $\pi$ ends with a right contraction step: |
|
270 | 279 |
\[ |
271 | 280 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
272 | 281 |
\] |
273 |
|
|
274 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
|
275 |
We define: |
|
282 |
By the inductive hypothesis we have functions $\vec f_\Delta , f_0, f_1$ corresponding to the RHS $\Delta , A ,A$. |
|
283 |
We may define $\vec f^\pi_\Delta = \vec f_\Delta$ and: |
|
276 | 284 |
\[ |
277 | 285 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
278 | 286 |
\quad \dfn \quad |
Formats disponibles : Unified diff