Révision 265 CSL17/tech-report/soundness.tex
soundness.tex (revision 265) | ||
---|---|---|
166 | 166 |
[Proof interpretation] |
167 | 167 |
\label{lem:proof-interp} |
168 | 168 |
From a typed-variable normal form $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma \seqar \Delta$ |
169 |
there are $\bc (\charfn{}{i-1})$ functions $ f^\pi_B (\vec u ; \vec x , w)$ for $B\in\Delta$ such that |
|
169 |
there are $\bc (\charfn{}{i-1})$ functions $ f^\pi_B (\vec u ; \vec x , \vec w)$ for $B\in\Delta$ such that
|
|
170 | 170 |
% such that, for any $l, \vec u ; \vec x , w$, we have: |
171 | 171 |
\[ |
172 | 172 |
% \vec a^\nu = \vec u , |
... | ... | |
195 | 195 |
|
196 | 196 |
|
197 | 197 |
\paragraph*{Negation} |
198 |
Can assume only on atomic formulae, so no effect. |
|
198 |
Suppose $\pi$ ends with a right negation step: |
|
199 |
\[ |
|
200 |
\vlinf{\rigrul{\cnot}}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \cnot A , \Delta }{\normal (\vec u) , \safe (\vec x) , \Gamma , A\seqar \Delta} |
|
201 |
\] |
|
202 |
Notice that, since $\pi$ is in De Morgan form, we have that $A$ is atomic ($s\leq t$) and so, in particular, $\Pi^\safe_{i-1}$. |
|
203 |
So we can simply set the witness for both $A$ and $\cnot A$ to $0$. |
|
204 |
Namely, if $\vec f (\vec u ; \vec x , \vec w , w )$ is obtained by the inductive hypothesis, then we may set $f^\pi_B ( \vec u ; \vec x , \vec w) \dfn f_B (\vec u ;\vec x , \vec w , 0)$ for $B\in \Delta$, and $f^\pi_A (\vec u ; \vec x , \vec w) \dfn 0$. |
|
205 |
The bounding polynomial remains the same. |
|
199 | 206 |
|
200 | 207 |
\paragraph*{Logical rules} |
201 | 208 |
Pairing, depairing. Need length-boundedness. |
Formats disponibles : Unified diff