Révision 263 CSL17/tech-report/arithmetic.tex
arithmetic.tex (revision 263) | ||
---|---|---|
33 | 33 |
\item $\forall x^\safe, y^\safe . \safe(x+y)$ |
34 | 34 |
\item $\forall u^\normal, x^\safe . \safe(u\times x) $ |
35 | 35 |
\item $\forall u^\normal , v^\normal . \safe (u \smsh v)$ |
36 |
\item $\forall u^\normal .\safe(|x|)$
|
|
36 |
\item $\forall u^\normal .\safe(|u|)$
|
|
37 | 37 |
\end{enumerate} |
38 | 38 |
%\[ |
39 | 39 |
%\begin{array}{l} |
... | ... | |
50 | 50 |
%\forall u^\normal .\safe(|x|) |
51 | 51 |
%\end{array} |
52 | 52 |
%\] |
53 |
\patrick{Actually I guess that we could replace the last one by $\forall x^\normal .\safe(|x|)$, as $|x|$ has smaller size as $x$? But I am not sure this would be needed anywhere. } |
|
54 |
|
|
53 | 55 |
Notice in particular that we have $\normal \subseteq \safe$. |
54 | 56 |
% |
55 | 57 |
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}: |
56 | 58 |
\begin{enumerate}[(1)] |
57 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) $ |
|
58 |
\item $\forall x^{\safe}. x \neq \succ{} x$ |
|
59 |
\item $\forall x^{\safe}.0 \leq x$ |
|
60 |
\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $ |
|
59 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) $ \label{axiom1}
|
|
60 |
\item $\forall x^{\safe}. x \neq \succ{} x$ \label{axiom2}
|
|
61 |
\item $\forall x^{\safe}.0 \leq x$ \label{axiom3}
|
|
62 |
\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $ \label{axiom4}
|
|
61 | 63 |
\item $\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)$ |
62 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$ |
|
64 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$ \label{axiom6}
|
|
63 | 65 |
\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)$ |
64 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$ |
|
66 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$ \label{axiom<=transitivity}
|
|
65 | 67 |
\item $|0|=0$ |
66 | 68 |
\item $\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) $ |
67 | 69 |
\item $|\succ{}0|=\succ{} 0$ |
... | ... | |
74 | 76 |
\item $\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))$ |
75 | 77 |
\item $\forall x^{\safe}, y^{\safe}. x\leq x+y$ |
76 | 78 |
\item $\forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))$ |
77 |
\item $\forall x^{\safe}, y^{\safe}. x+y=y+x$ |
|
79 |
\item $\forall x^{\safe}, y^{\safe}. x+y=y+x$ \label{axiom21}
|
|
78 | 80 |
\item $\forall x^{\safe}. x+0=x$ |
79 | 81 |
\item $\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)$ |
80 | 82 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)$ |
81 | 83 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)$ |
82 | 84 |
\item $\forall x^{\safe} 0\cdot x =0$ |
83 |
\item $\forall x^{\safe}, y^{\normal}. x\cdot(\succ{}y)=(x\cdot y)+x$
|
|
85 |
\item $\forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x$ \label{axiom27}
|
|
84 | 86 |
\item $\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x$ |
85 |
\item $\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)$ |
|
87 |
\item $\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)$ \label{axiom29}
|
|
86 | 88 |
\item $\forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))$ |
87 | 89 |
\item $\forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))$ |
88 | 90 |
\item $\forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))$ |
... | ... | |
221 | 223 |
\begin{array}{l} |
222 | 224 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
223 | 225 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
224 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y ) \\ |
|
225 |
\forall u^\normal ,x^\safe . u \succ{} x = u + ux |
|
226 |
%\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y ) \\ |
|
227 |
\forall u^\normal . (u = 0 \cor \exists v^\normal.\ u = \succ{} v ) \\ |
|
228 |
\forall u^\normal ,x^\safe . u \cdot \succ{} x = u + ux |
|
226 | 229 |
\end{array} |
227 | 230 |
\] |
228 | 231 |
\todo{Proof: Patrick? The final two should require PIND.} |
229 |
\end{example} |
|
230 |
|
|
232 |
|
|
233 |
\patrick{Actually statement 4 is nearly trivial from axiom 27 (for which I corrected the sorts). Maybe you meant something else? |
|
234 |
|
|
235 |
For statement 3 I replaced the quantifications $\safe$ by $\normal$, otherwise I don't know how to prove it. But I think we need the stronger statement with $\safe$, so probably we should add it as an additional axiom.} |
|
236 |
\end{example} |
|
237 |
\begin{proof} |
|
238 |
\begin{itemize} |
|
239 |
\item For the first statement, assume $\succ{} (x)=0$ in order to derive a contradiction. From axiom \ref{axiom1} we deduce $x \leq x$, and so by transitivity (axiom \ref{axiom<=transitivity}) we have $x\leq 0$. So axiom \ref{axiom3} gives us $x=0$, and so $x=\succ{} (x)$. Finally with axiom \ref{axiom2} we conclude with a contradiction. |
|
240 |
\item For statement 2 assume $\succ{} x= \succ{} y$ and, in view of a contradiction, $x\neq y$. Let us apply axiom \ref{axiom6} and assume we are in the case where $x\leq y$ (the case $y\leq x$ is symmetric). By axiom \ref{axiom4}, using the assumption $x\neq y$ we deduce $\succ{} x \leq y$. So as $\succ{} x = \succ{} y$ we can derive that $\succ{} y \leq y$. So by using axiom \ref{axiom1} we obtain that $\succ{} y = y$, hence axiom \ref{axiom2} gives us a contradiction, so we are done. |
|
241 |
\item For statement 3 we proceed by induction on $u$ on the formula $A(u)= (u=0) \cup \exists^{\normal} v. u=\succ{} v$. The formula $A(0)$ obviously holds. Let us assume $A(u)$ and prove $A(\succ{0} u)$ (the case for $A(\succ{1} u)$ will be similar). By $A(u)$ we deduce that either $u=0$, in which case we also have $\succ{0} u=0$, hence $A(\succ{0} u)$ also holds, or there is a $v$ such that $u=\succ{} v$. In this latter case we have $\succ{0} u=2\cdot(\succ{} v)=2 v +2$ (by axiom \ref{axiom29}), hence have $\succ{0} u=\succ{} (\succ{} (2\cdot v))$, and so $A(\succ{0} u)$ holds. |
|
242 |
|
|
243 |
By induction we conclude that $\forall^{\normal} u. A(u)$ holds. |
|
244 |
\item For statement 4 we just use axiom \ref{axiom27} followed by the $+$ commutativity axiom \ref{axiom21}. |
|
245 |
\end{itemize} |
|
246 |
\end{proof} |
|
231 | 247 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
232 | 248 |
\begin{proposition} |
233 | 249 |
[Length induction] |
Formats disponibles : Unified diff