Révision 263

CSL17/tech-report/arithmetic.tex (revision 263)
33 33
	\item $\forall x^\safe, y^\safe . \safe(x+y)$
34 34
	\item $\forall u^\normal, x^\safe . \safe(u\times x) $
35 35
	\item $\forall u^\normal , v^\normal . \safe (u \smsh v)$
36
	\item $\forall u^\normal .\safe(|x|)$
36
	\item $\forall u^\normal .\safe(|u|)$
37 37
\end{enumerate}
38 38
%\[
39 39
%\begin{array}{l}
......
50 50
%\forall u^\normal .\safe(|x|)
51 51
%\end{array}
52 52
%\]
53
\patrick{Actually I guess that we could replace the last one by $\forall x^\normal .\safe(|x|)$, as $|x|$ has smaller size as $x$? But I am not sure this would be needed anywhere. }
54

  
53 55
Notice in particular that we have $\normal \subseteq \safe$.
54 56
%
55 57
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}:
56 58
\begin{enumerate}[(1)]
57
	\item $\forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) $
58
	\item $\forall x^{\safe}. x \neq \succ{} x$
59
	\item $\forall x^{\safe}.0 \leq x$
60
	\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $
59
	\item $\forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) $ \label{axiom1}
60
	\item $\forall x^{\safe}. x \neq \succ{} x$       \label{axiom2}
61
	\item $\forall x^{\safe}.0 \leq x$       \label{axiom3}
62
	\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $ \label{axiom4}
61 63
	\item $\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)$
62
	\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$
64
	\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$  \label{axiom6}
63 65
	\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)$
64
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$
66
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$ \label{axiom<=transitivity}
65 67
	\item $|0|=0$
66 68
	\item $\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp  (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) $
67 69
	\item $|\succ{}0|=\succ{} 0$
......
74 76
	\item $\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}.      (|x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))$
75 77
	\item $\forall x^{\safe}, y^{\safe}.      x\leq x+y$
76 78
	\item $\forall x^{\safe}, y^{\safe}.    (  ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y))$
77
	\item $\forall x^{\safe}, y^{\safe}.     x+y=y+x$
79
	\item $\forall x^{\safe}, y^{\safe}.     x+y=y+x$ \label{axiom21}
78 80
	\item $\forall x^{\safe}.       x+0=x$
79 81
	\item $\forall x^{\safe}, y^{\safe}.       x+\succ{}y=\succ{}(x+y)$
80 82
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)$
81 83
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)$
82 84
	\item $\forall x^{\safe}       0\cdot x =0$
83
	\item $\forall x^{\safe}, y^{\normal}.  x\cdot(\succ{}y)=(x\cdot y)+x$
85
	\item $\forall x^{\normal}, y^{\safe}.  x\cdot(\succ{}y)=(x\cdot y)+x$  \label{axiom27}
84 86
	\item $\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x$
85
	\item $\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)$
87
	\item $\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)$ \label{axiom29}
86 88
	\item $\forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))$
87 89
	\item $\forall x^{\normal}  .     (x\neq 0 \cimp  |x|=\succ{}(\hlf{x}))$
88 90
	\item $\forall x^{\safe}, y^{\safe}.   (  x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))$
......
221 223
	\begin{array}{l}
222 224
	\forall x^\safe . 0 \neq \succ{} (x) \\
223 225
	\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
224
	\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )  \\
225
	\forall u^\normal ,x^\safe . u \succ{} x = u + ux
226
	%\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )  \\
227
	\forall u^\normal . (u = 0 \cor \exists v^\normal.\  u = \succ{} v  )  \\
228
	\forall u^\normal ,x^\safe . u \cdot \succ{} x = u + ux
226 229
	\end{array}
227 230
	\]
228 231
	\todo{Proof: Patrick? The final two should require PIND.}
229
\end{example}
230

  
232
	
233
	\patrick{Actually statement 4 is nearly trivial from axiom 27 (for which I corrected the sorts). Maybe you meant something else?
234
	
235
	For statement 3 I replaced the quantifications $\safe$ by $\normal$, otherwise I don't know how to prove it. But I think we need the stronger statement with $\safe$, so probably we should add it as an additional axiom.}
236
	\end{example}
237
\begin{proof}
238
\begin{itemize}
239
 \item For the first statement, assume  $\succ{} (x)=0$ in order to derive a contradiction. From axiom \ref{axiom1} we deduce $x \leq x$, and so by transitivity (axiom \ref{axiom<=transitivity}) we have $x\leq 0$. So axiom \ref{axiom3} gives us $x=0$, and so $x=\succ{} (x)$. Finally with axiom  \ref{axiom2} we conclude with a contradiction.
240
 \item For statement 2 assume $\succ{} x= \succ{} y$ and, in view of a contradiction, $x\neq y$. Let us apply axiom \ref{axiom6} and assume we are in the case where $x\leq y$ (the case $y\leq x$ is symmetric). By axiom \ref{axiom4}, using the assumption $x\neq y$ we deduce $\succ{} x \leq y$. So as $\succ{} x = \succ{} y$ we can derive that $\succ{} y \leq y$. So by using axiom \ref{axiom1} we obtain that $\succ{} y = y$, hence axiom \ref{axiom2} gives us a contradiction, so we are done.
241
 \item For statement 3 we proceed by induction on $u$ on the formula $A(u)= (u=0) \cup \exists^{\normal} v. u=\succ{} v$. The formula $A(0)$ obviously holds. Let us assume $A(u)$ and prove $A(\succ{0} u)$ (the case for $A(\succ{1} u)$ will be similar).  By $A(u)$ we deduce that either $u=0$, in which case we also have $\succ{0} u=0$, hence  $A(\succ{0} u)$ also holds, or there is a $v$ such that $u=\succ{} v$. In this latter case we have $\succ{0} u=2\cdot(\succ{} v)=2 v +2$ (by axiom \ref{axiom29}), hence have $\succ{0} u=\succ{} (\succ{} (2\cdot v))$, and so $A(\succ{0} u)$ holds.
242
 
243
 By induction we conclude that $\forall^{\normal} u. A(u)$ holds.
244
\item For statement 4 we just use axiom  \ref{axiom27} followed by the $+$ commutativity axiom \ref{axiom21}.
245
\end{itemize}
246
\end{proof}
231 247
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
232 248
\begin{proposition}
233 249
	[Length induction]

Formats disponibles : Unified diff