Statistiques
| Révision :

root / CSL17 / tech-report / arithmetic.tex @ 262

Historique | Voir | Annoter | Télécharger (27,29 ko)

1
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. 
3
Our base language consists of constant and function symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and predicate symbols 
4
 $\{\leq, \safe, \normal \}$. The function symbols are interpreted in the intuitive way, with $|x|$ denoting the length of $x$ seen as a binary string, and $x\smsh y$ denoting $2^{|x||y|}$, so a string of length $|x||y|+1$.
5
 We may write $\succ{0}(x)$ for $2\cdot x$, $\succ{1}(x)$ for $\succ{}(2\cdot x)$, and $\pred (x)$ for $\hlf{x}$, to better relate to the $\bc$ setting.
6
 
7
We consider formulas of classical first-order logic, over $\neg$, $\cand$, $\cor$, $\forall$, $\exists$, along with usual shorthands and abbreviations. 
8
%The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
9
%We will also use as shorthand notations:
10
%$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$ 
11
\textit{Atomic formulas} formulas are of the form $s\leq t$, for terms $s,t$.
12
 We will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of a subformula of the form $\neg \neg A$.
13
 
14
 
15
 We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to  $\exists x^{N_0}$,  $\forall x^{N_0}$ as \emph{safe} quantifiers.
16
 We also write $\exists x^\normal \leq |t| . A$ for $\exists x^\normal . ( x \leq |t| \cand A )$ and $\forall x^\normal \leq |t|. A $ for $\forall x^\normal. (x \leq |t| \cimp A )$. We refer to these as \emph{sharply bounded} quantifiers, as in bounded arithmetic.
17

    
18

    
19
The theories we introduce are directly inspired from bounded arithmetic, namely the theories $S^i_2$.
20
We include a similar set of axioms for direct comparison, although in our setting these are not minimal.
21
Indeed, $\#$ can be defined using induction in our setting.
22

    
23
The $\basic$ axioms of bounded arithmetic give the inductive definitions and interrelationships of the various function and predicate symbols.
24
It also states fundamental algebraic properties, e.g.\ $(0,\succ{ } )$ is a free algebra, and, for us, it will also give us certain `typing' information for our function symbols based on their $\bc$ specification, with safe inputs ranging over $\safe$ and normal ones over $\normal$.
25

    
26

    
27
Namely, in addition to usual axioms, our $\basic$ includes the following:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.}
28
\begin{enumerate}[(a)]
29
	\item $\forall u^\normal. \safe(u) $
30
	\item $\safe (0) $
31
	\item $\forall x^\safe . \safe (\succ{} x) $
32
	\item $\forall u^\safe .\safe(\hlf{u})$
33
	\item $\forall x^\safe, y^\safe . \safe(x+y)$
34
	\item $\forall u^\normal, x^\safe . \safe(u\times x) $
35
	\item $\forall u^\normal , v^\normal . \safe (u \smsh v)$
36
	\item $\forall u^\normal .\safe(|x|)$
37
\end{enumerate}
38
%\[
39
%\begin{array}{l}
40
%\forall u^\normal. \safe(u) \\
41
%\safe (0) \\
42
%\forall x^\safe . \safe (\succ{} x) \\
43
%\forall u^\safe .\safe(\hlf{u})
44
%\end{array}
45
%\qquad
46
%\begin{array}{l}
47
%\forall x^\safe, y^\safe . \safe(x+y)\\
48
%\forall u^\normal, x^\safe . \safe(u\times x) \\
49
%\forall u^\normal , v^\normal . \safe (u \smsh v)\\
50
%\forall u^\normal .\safe(|x|)
51
%\end{array}
52
%\]
53
Notice in particular that we have $\normal \subseteq \safe$.
54
%
55
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}:
56
\begin{enumerate}[(1)]
57
	\item $\forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) $
58
	\item $\forall x^{\safe}. x \neq \succ{} x$
59
	\item $\forall x^{\safe}.0 \leq x$
60
	\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $
61
	\item $\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)$
62
	\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$
63
	\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)$
64
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$
65
	\item $|0|=0$
66
	\item $\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp  (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) $
67
	\item $|\succ{}0|=\succ{} 0$
68
	\item $\forall x^{\safe}, y^{\safe}.   (x\leq y \cimp   |x|\leq  |y|)$
69
	\item $\forall x^{\normal}, y^{\normal}.    |x\smsh y|=\succ{}( |x|\cdot  |y|)$
70
	\item $\forall y^{\normal}.    0 \smsh y=\succ{} 0$
71
	\item $\forall x^{\normal}.    (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))$
72
	\item $\forall x^{\normal}, y^{\normal}.    x \smsh y = y \smsh x$
73
	\item $\forall x^{\normal}, y^{\normal}, z^{\normal}. (   |x|= |y| \cimp x\smsh z = y\smsh z)$
74
	\item $\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}.      (|x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))$
75
	\item $\forall x^{\safe}, y^{\safe}.      x\leq x+y$
76
	\item $\forall x^{\safe}, y^{\safe}.    (  ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y))$
77
	\item $\forall x^{\safe}, y^{\safe}.     x+y=y+x$
78
	\item $\forall x^{\safe}.       x+0=x$
79
	\item $\forall x^{\safe}, y^{\safe}.       x+\succ{}y=\succ{}(x+y)$
80
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)$
81
	\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)$
82
	\item $\forall x^{\safe}       0\cdot x =0$
83
	\item $\forall x^{\safe}, y^{\normal}.  x\cdot(\succ{}y)=(x\cdot y)+x$
84
	\item $\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x$
85
	\item $\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)$
86
	\item $\forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))$
87
	\item $\forall x^{\normal}  .     (x\neq 0 \cimp  |x|=\succ{}(\hlf{x}))$
88
	\item $\forall x^{\safe}, y^{\safe}.   (  x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))$
89
\end{enumerate}
90

    
91

    
92
%$$
93
%%\begin{equation}
94
%\begin{array}{l}
95
%\forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) \\
96
%\forall x^{\safe}. x \neq \succ{} x\\
97
%\forall x^{\safe}.0 \leq x\\
98
%\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\
99
%\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\
100
%\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\
101
%\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\
102
%\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\
103
%|0|=0\\
104
%\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp  (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\
105
%|\succ{}0|=\succ{} 0\\
106
%\forall x^{\safe}, y^{\safe}.   (x\leq y \cimp   |x|\leq  |y|)\\
107
%\forall x^{\normal}, y^{\normal}.    |x\smsh y|=\succ{}( |x|\cdot  |y|)\\
108
%\forall y^{\normal}.    0 \smsh y=\succ{} 0\\
109
%\forall x^{\normal}.    (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\
110
%\forall x^{\normal}, y^{\normal}.    x \smsh y = y \smsh x\\
111
%\forall x^{\normal}, y^{\normal}, z^{\normal}. (   |x|= |y| \cimp x\smsh z = y\smsh z)\\
112
%\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}.      (|x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\
113
%\forall x^{\safe}, y^{\safe}.      x\leq x+y\\
114
%\forall x^{\safe}, y^{\safe}.    (  ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y))\\
115
%\forall x^{\safe}, y^{\safe}.     x+y=y+x\\
116
%\forall x^{\safe}.       x+0=x\\
117
%\forall x^{\safe}, y^{\safe}.       x+\succ{}y=\succ{}(x+y)\\
118
%\forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)\\
119
%\forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)\\
120
%\forall x^{\safe}       0\cdot x =0\\
121
%\forall x^{\safe}, y^{\normal}.  x\cdot(\succ{}y)=(x\cdot y)+x\\
122
%%\text{\anupam{check above normal/safe! Pretty sure should be other way around.}}\\
123
%\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\
124
%\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\
125
%\forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\
126
%\forall x^{\normal}  .     (x\neq 0 \cimp  |x|=\succ{}(\hlf{x}))\\
127
%\forall x^{\safe}, y^{\safe}.   (  x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))
128
%\end{array}
129
%%\end{equation}
130
%$$
131
%
132

    
133

    
134

    
135

    
136

    
137

    
138

    
139
%\begin{definition}
140
%	[Basic theory]
141
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
142
%	\end{definition}
143

    
144

    
145
%Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
146
  
147
%\begin{definition}
148
%[Derived functions and notations]
149
%We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
150
%We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
151
%
152
%Need $bit$, $\beta$ , $\pair{}{}{}$.
153
%\end{definition}
154
%
155
%(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
156
%
157
%Use base theory + sharply bounded quantifiers.
158

    
159
In addition to these axioms, our theories will contain forms of induction, defined below.
160

    
161
%\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
162

    
163

    
164
\begin{definition}
165
[Polynomial induction]
166
\label{def:polynomialinduction}
167
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, for each formula $A(x)$:
168
\[
169
\left(
170
A(0) 
171
\cand (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
172
\cand  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
173
\right)
174
\cimp  \forall x^{\normal} . A(x)
175
\]
176
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of $\pind$ axioms where $A(x) \in \Xi$. 
177

    
178
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
179
\end{definition}
180

    
181
We will introduce in fact a hierarchy of theories calibrated by the complexity of induction formulae, so we now introduce the appropriate quantifier hierarchy.
182

    
183
\begin{definition}
184
	[Quantifier hierarchy]
185
	$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free.
186
	We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
187
	We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
188
\end{definition}
189

    
190

    
191
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$.
192
The criterion is purely to give an appropriate definition of the hierarchy above.
193

    
194

    
195
\begin{definition}\label{def:ariththeory}
196
Define the theory $\arith^i$ consisting of the $\basic$ axioms, $\cpind{\Sigma^\safe_i } $,
197
%\begin{itemize}
198
%	\item $\basic$;
199
%	\item $\cpind{\Sigma^\safe_i } $:
200
%\end{itemize}
201
and a particular inference rule, called $\rais$, for closed formulas $\forall \vec x. \exists y. A$:
202
\[
203
 \dfrac{\proves \forall \vec x^\normal . \exists  y^\safe .  A }{ \proves \forall \vec x^\normal .\exists y^\normal . A}
204
\]
205
We will write $\arith^i \proves A$ if $A$ is a logical consequence of the axioms and rules of $\arith^i$, in the usual way.
206
\end{definition}
207
%\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
208
%
209
%\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
210

    
211
\begin{remark}
212
Notice that $\rais$ looks similar to the $K$ rule from the calculus for the modal logic $S4$ (which subsumes necessitation), and indeed we believe there is a way to present these results in such a framework.
213
However, the proof theory of first-order modal logics, in particular free-cut elimination results used for witnessing, is not sufficiently developed to carry out such an exposition.	
214
	\end{remark}
215

    
216

    
217
\begin{example}
218
	[Some basic theorems]
219
	We give proofs of the following, that are sometimes included as basic axioms, in $\arith^1$:
220
	\[
221
	\begin{array}{l}
222
	\forall x^\safe . 0 \neq \succ{} (x) \\
223
	\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
224
	\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )  \\
225
	\forall u^\normal ,x^\safe . u \succ{} x = u + ux
226
	\end{array}
227
	\]
228
	\todo{Proof: Patrick? The final two should require PIND.}
229
\end{example}
230

    
231
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
232
\begin{proposition}
233
	[Length induction]
234
	The axiom schema of formulae,
235
	\begin{equation}
236
	\label{eqn:lind}
237
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
238
	\end{equation}
239
	for formulae $A \in \Sigma^\safe_i$
240
	is equivalent to $\cpind{\Sigma^\safe_i}$.
241
\end{proposition}
242
\begin{proof}
243
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
244
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
245
\end{proof}
246

    
247
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\Xi}$, when $A \in \Xi$.
248
We will freely use this in place of polynomial induction whenever it is convenient.
249

    
250

    
251
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
252

    
253
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  \vec x^{\safe}, \exists! y^{\safe}. A_f (\vec u , \vec x , y)$, such that $\Nat \models A_f (\vec u , \vec x , f(\vec u , \vec x))$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
254
We sometimes explicitly delimit variables as such when it is helpful, writing $A_f (\vec u ; \vec x , y)$.
255
 
256
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine:
257
\begin{itemize}
258
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} ,  \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$ if $k\geq m+1$ (resp. $u_k$ if $k\leq m$).
259
%\item Successor $\succ{}$: $\forall x^{\safe} , \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
260
%\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
261
\item Conditional $C$: 
262
$$
263
\forall x^{\safe} ,  y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. 
264
\left( 
265
\begin{array}{rl}
266
&\exists z^{\safe}.x=\succ{0}z \cand y=y_0 \\
267
\cor&  \exists z^{\safe}.x=\succ{1}z \cand y=y_1
268
\end{array}
269
\right)
270
$$
271
%$$\begin{array}{ll}
272
%\forall x^{\safe} ,  y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=0)\cand (y=y_0)\\
273
%                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\
274
%                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\
275
%\end{array}
276
%$$
277
%\item Addition:
278
%$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$. 
279
\item Prefix:
280
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
281
  of length $k$ is $y$. It is defined as:
282
  $$\begin{array}{ll}
283
\exists z^{\safe} , \exists l^{\normal} \leq |x|. & (k+l= |x|\\
284
                                                                                                   & \cand \; |z|=l\\
285
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
286
                                                                                                   \end{array}
287
$$
288
\item The following predicates will also be needed in proofs:
289

    
290
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  for instance can be
291
defined by:
292
$$ \exists y^{\safe} .(\pref(k,x,y) \cand \exists z^{\safe} . y=\succ{0}z).$$
293
\end{itemize}
294

    
295
\subsection{A sequent calculus presentation}
296
\begin{figure}
297
	\[
298
	\small
299
	\hspace{-4em}
300
	\begin{array}{cccc}
301
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
302
	%& \vlinf{\id}{}{p \seqar p}{}
303
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
304
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
305
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
306
	& \vliinf{cut}{}{\Gamma, \Sigma \seqar \Delta, \Pi }{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
307
	&	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
308
	&
309
	
310
	\vlinf{\rigrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
311
		\\
312
		
313
		\noalign{\bigskip}
314
		%\text{Structural:} & & & \\
315
		%\noalign{\bigskip}
316
		
317
		\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
318
		&
319
		\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
320
		&
321
		\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
322
		&
323
		\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
324
		\\
325
		\noalign{\bigskip}
326
		\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
327
		&
328
		\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
329
		&
330
		\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
331
		&
332
		\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) }
333
	\\
334
	\noalign{\bigskip}
335
	%\noalign{\bigskip}
336
	\vliinf{\lefrul{\cor}}{}{\Gamma, \Sigma, A \cor B \seqar \Delta, \Pi}{\Gamma , A \seqar \Delta}{\Sigma, B \seqar \Pi}
337
	&
338
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
339
	&
340
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
341
	%\quad
342
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
343
	&
344
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
345
	%\quad
346
	\vliinf{\rigrul{\cand}}{}{\Gamma, \Sigma \seqar \Delta, \Pi, A \cand B }{\Gamma \seqar \Delta, A}{\Sigma \seqar \Pi, B}
347
	%\noalign{\bigskip}
348
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
349
	\end{array}
350
	\]
351
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
352
\end{figure}
353

    
354
In order to carry out witness extraction for proofs of $\arith^i$, it will be useful to work with a \emph{sequent calculus} representation of proofs.
355
Such systems exhibit strong normal forms, notably `free-cut free' proofs, and so are widely used for the `witness function method' for extracting programs from proofs \cite{Buss86book,Buss98:intro-proof-theory}.
356
We state the required technical material here only briefly, due to space constraints.
357

    
358
A \emph{sequent} is an expression $\Gamma \seqar \Delta$ where $\Gamma$ and $\Delta$ are multisets of formulas. 
359
The inference rules of the sequent calculus $\LK$ are displayed in Fig.~\ref{fig:sequentcalculus}.
360
Of course, we have the following:
361
\begin{proposition}
362
	$A$ is a first-order theorem if and only if there is an $\LK$ proof of $\seqar A$.
363
\end{proposition}
364

    
365
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
366
% \[
367
% \begin{array}{cc}
368
%    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
369
%\end{array}
370
%\]
371
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
372
% \begin{enumerate}
373
% \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of   
374
%$ \Gamma,  \Pi$ are called \textit{context formulas}. 
375
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
376
%    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).  
377
%   \end{enumerate}
378
% 
379
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
380
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
381
%
382
%%\begin{definition}
383
%%[Polynomial induction]
384
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
385
%%\[
386
%%A(0) 
387
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
388
%%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
389
%%\cimp  \forall x^{\normal} . A(x)
390
%%\]
391
%%for each formula $A(x)$.
392
%%
393
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
394
%%
395
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
396
%%\end{definition}
397
%
398
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
399

    
400
We extend this purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
401
 For instance the axiom $\pind$ of Dfn.~\ref{def:polynomialinduction} is represented by the following rule:
402
\begin{equation}
403
\label{eqn:ind-rule}
404
\small
405
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
406
\end{equation}
407
where $t$ varies over terms and the eigenvariable $a$ does not occur in the lower sequent.
408
%
409
Similarly the $\rais$ inference rule of Dfn.~\ref{def:ariththeory} is represented by the nonlogical rule,
410
 \[
411
 \begin{array}{cc}
412
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
413
\end{array}
414
\]
415
%
416
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
417
%\[
418
% \begin{array}{cc}
419
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
420
%\end{array}
421
%\]
422
%}
423
%
424
$\basic$ axioms are represented by designated initial sequents.
425
For instance here are some initial sequents corresponding to some of the $\basic$ axioms:
426
\[
427
\small
428
\begin{array}{l}
429
\begin{array}{cccc}
430
\vlinf{}{}{\seqar \safe (0)}{}&
431
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
432
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
433
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
434
\end{array}
435
\\
436
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
437
\qquad
438
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
439
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
440
\qquad
441
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
442
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
443
\end{array}
444
\]
445

    
446
The sequent system for $\arith^i$ extends $\LK$ by the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ rules.
447
 Naturally, by completeness, we have that $\arith^i \proves A$ if and only if there is a sequent proof of $\seqar A$ in the corresponding system.
448
 In fact, by \emph{free-cut elimination} results \cite{Takeuti87,Cook:2010:LFP:1734064} we may actually say something much stronger.
449
 
450
 Let us say that a sorting $(\vec u ; \vec x)$ of the variables $\vec u , \vec x$ is \emph{compatible} with a formula $A$ if each variable of $\vec x$ occurs hereditarily safe with respect to the $\bc$-typing of terms, i.e.\ never under $\smsh, |\cdot|$ and to the right of $\times$.
451
 
452
\begin{theorem}
453
	[Typed variable normal form]
454
	\label{thm:normal-form}
455
	If $\arith^i\proves  A$ then there is a $\arith^i$ sequent proof $\pi$ of $A$ such that each line has the form:
456
	\[
457
	\normal(\vec u), \safe (\vec x), \Gamma \seqar \Delta
458
	\]
459
	where $\Gamma \seqar \Delta$ contains only $\Sigma^\safe_i$ formulae for which the sorting $(\vec u ;\vec x)$ is compatible.
460
\end{theorem}
461

    
462
Strictly speaking, we must alter some of the sequent rules a little to arrive at this normal form. For instance the $\pind$ rule would have $\normal(\vec u)$ in its lower sequent rather than $\normal (t(\vec u))$. The latter is a consequence of the former already in $\basic$.
463
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible sorting of variables on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations.
464

    
465
As we mentioned, the fact that only $\Sigma^\safe_i$ formulae occur is due to the free-cut elimination result for first-order calculi \cite{Takeuti87,Cook:2010:LFP:1734064}, which gives a form of proof where every $\cut$ step has one of its cut formulae `immediately' below a non-logical step. Again, we have to adapt the $\rais$ rule a little to achieve our result, due to the fact that it has a $\exists x^\normal$ in its lower sequent. For this we consider a merge of $\rais$ and $\cut$, which allows us to directly cut the upper sequent of $\rais$ against a sequent of the form $\normal(u), A(u), \Gamma \seqar \Delta$.
466

    
467
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers \cite{Buss86book}, although we use ones that satisfy the aforementioned constraints. For instance, we include the following rules, from which the remaining ones are similar:
468
\[
469
\vlinf{\rigrul{\forall}}{}{ \normal(\vec u) , \safe (\vec x), \Gamma \seqar \Delta , \forall x^\safe . A(x)}{\normal(\vec u ) , \safe (\vec x), \safe (x) , \Gamma \seqar \Delta, A(x)}
470
\quad
471
\vlinf{\rigrul{\exists}}{}{\normal(\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x^\safe . A(x)}{ \normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A(t) }
472
\]
473
\[
474
\vlinf{\lefrul{|\forall|}}{}{\normal (\vec u ) , \safe (\vec x) , s(\vec u) \leq |t(\vec u)| , \forall u^\normal \leq |t(\vec u)| . A(u) , \Gamma \seqar \Delta }{\normal (\vec u ) , \safe (\vec x) , A(s(\vec u)  ) , \Gamma \seqar \Delta  }
475
\]
476
with the usual side conditions and where, in $\rigrul{\exists}$, $(\vec u ; \vec x)$ is compatible with $t$.