Révision 262 CSL17/tech-report/soundness.tex

soundness.tex (revision 262)
37 37
\end{definition}
38 38

  
39 39
Notice that $\leqfn (l; x,y) = 1$ just if $x \mode l \leq y \mode l$.
40
We can also define $\eq( l; x,y)$ as $\andfn (;\leq(l;x,y),\leq(l;y,x))$.
40
We can also define $\eq( l; x,y)$ as $\andfn (;\leqfn(l;x,y),\leqfn(l;y,x))$.
41 41

  
42 42
%\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
43 43
%

Formats disponibles : Unified diff