Révision 262 CSL17/tech-report/soundness.tex
soundness.tex (revision 262) | ||
---|---|---|
37 | 37 |
\end{definition} |
38 | 38 |
|
39 | 39 |
Notice that $\leqfn (l; x,y) = 1$ just if $x \mode l \leq y \mode l$. |
40 |
We can also define $\eq( l; x,y)$ as $\andfn (;\leq(l;x,y),\leq(l;y,x))$.
|
|
40 |
We can also define $\eq( l; x,y)$ as $\andfn (;\leqfn(l;x,y),\leqfn(l;y,x))$.
|
|
41 | 41 |
|
42 | 42 |
%\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
43 | 43 |
% |
Formats disponibles : Unified diff