Statistiques
| Révision :

root / CSL17 / tech-report / soundness.tex @ 262

Historique | Voir | Annoter | Télécharger (17,18 ko)

1 251 adas
\section{Soundness}
2 251 adas
\label{sect:soundness}
3 251 adas
In this section we show that the representable functions of our theories $\arith^i$ are in $\fphi i$ (`soundness').
4 251 adas
The main result is the following:
5 251 adas
6 251 adas
\begin{theorem}
7 251 adas
	\label{thm:soundness}
8 251 adas
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
9 251 adas
\end{theorem}
10 251 adas
11 251 adas
12 251 adas
13 251 adas
The problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions, Lemma~\ref{lem:polychecking}.
14 251 adas
For this we will use \emph{length-bounded} witnessing argument, borrowing a similar idea from Bellantoni's work \cite{Bellantoni95}.
15 251 adas
16 251 adas
17 251 adas
\begin{definition}
18 251 adas
[Length bounded (in)equality]
19 251 adas
%We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
20 251 adas
%\[
21 251 adas
%x \mode l = y \mode l
22 251 adas
%\]
23 251 adas
%which is definable by safe recursion on $l$:
24 251 adas
%\[
25 251 adas
%\begin{array}{rcl}
26 251 adas
%\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
27 251 adas
%\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
28 251 adas
%\end{array}
29 251 adas
%\]
30 251 adas
We define \emph{length-bounded inequality} as:
31 251 adas
\[
32 251 adas
\begin{array}{rcl}
33 251 adas
\leqfn (0 ; x ,y) & \dfn & \cond(; \bit (0;x), 1, \bit (0;y) ) \\
34 251 adas
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; \cond(;\bit (\succ i l ; x) , \bit(\succ i l ; y),0 ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35 251 adas
\end{array}
36 251 adas
\]
37 251 adas
\end{definition}
38 251 adas
39 251 adas
Notice that $\leqfn (l; x,y) = 1$ just if $x \mode l \leq y \mode l$.
40 262 adas
We can also define $\eq( l; x,y)$ as $\andfn (;\leqfn(l;x,y),\leqfn(l;y,x))$.
41 251 adas
42 251 adas
%\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
43 251 adas
%
44 251 adas
%Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
45 251 adas
46 251 adas
47 251 adas
In the presence of a compatible sorting, we may easily define functions that \emph{evaluate} safe formulae in $\mubc$:
48 251 adas
49 251 adas
50 251 adas
\begin{proposition}
51 251 adas
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
52 251 adas
\end{proposition}
53 251 adas
54 254 adas
\begin{definition}
55 254 adas
	[Length bounded characteristic functions]
56 254 adas
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows.
57 254 adas
	%	If $A$ is a $\Pi_{i}$ formula then:
58 254 adas
	\[
59 254 adas
	\begin{array}{rcl}
60 254 adas
	\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
61 254 adas
	\smallskip
62 254 adas
	%	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
63 254 adas
	%	\smallskip
64 254 adas
	\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\
65 254 adas
	\smallskip
66 254 adas
	\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\
67 254 adas
	\smallskip
68 254 adas
	\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) )
69 254 adas
	%	\end{array}
70 254 adas
	%	\quad
71 254 adas
	%	\begin{array}{rcl}
72 254 adas
	\\	\smallskip
73 254 adas
	\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
74 254 adas
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
75 254 adas
	0 & \text{otherwise}
76 254 adas
	\end{cases} \\
77 254 adas
	\smallskip
78 254 adas
	\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn &
79 254 adas
	\begin{cases}
80 254 adas
	0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
81 254 adas
	1 & \text{otherwise}
82 254 adas
	\end{cases}
83 254 adas
	\end{array}
84 254 adas
	\]
85 254 adas
\end{definition}
86 251 adas
87 254 adas
88 251 adas
We will use the programs $\charfn{}{}$ in the witness functions we define below.
89 251 adas
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$.
90 251 adas
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'.
91 251 adas
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
92 251 adas
93 251 adas
94 251 adas
\begin{definition}
95 251 adas
	[Length bounded witness function]
96 251 adas
	For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i-1})$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
97 251 adas
	\begin{itemize}
98 251 adas
		\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$ and we set $b_A (l) = 1$.
99 251 adas
		\item If $A$ is $B \cor C$ then we may set $b_A = O(b_B + b_C)$ and define $		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )$.
100 251 adas
%		\[
101 251 adas
%		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w)
102 251 adas
%		\quad \dfn \quad
103 251 adas
%		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
104 251 adas
%		\]
105 251 adas
%		and we may set $b_A = O(b_B + b_C)$.
106 251 adas
		\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$.
107 251 adas
%		\item If $A$ is $B \cand C$ then
108 251 adas
%			\[
109 251 adas
%			\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w)
110 251 adas
%			\quad \dfn \quad
111 251 adas
%			\andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
112 251 adas
%			\]
113 251 adas
%			and we may set $b_A = O(b_B + b_C)$.
114 251 adas
		\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ we appeal to sharply bounded closure, Lemma~\ref{lem:sharply-bounded-recursion}, to define
115 251 adas
		\(
116 251 adas
		\wit{\vec u ; \vec x}{A}
117 251 adas
		 \dfn
118 251 adas
		\forall u \leq |t|.
119 251 adas
		\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) )
120 251 adas
		\)
121 251 adas
		%appealing to Lemma~\ref{lem:sharply-bounded-recursion},
122 251 adas
		and
123 251 adas
		we set
124 251 adas
		$b_A = O(b_{B(t)}^2 )$.
125 251 adas
		\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$.
126 251 adas
		\item If $A$ is $\exists x^\safe . B(x) $ then
127 251 adas
		\(
128 251 adas
		\wit{\vec u ; \vec x}{A}
129 251 adas
		\dfn
130 251 adas
		\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w ))
131 251 adas
		\)
132 251 adas
		where $q$ is obtained by the polychecking and bounded minimisation properties, Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation}, for $\wit{\vec u ; \vec x , x}{B(x)}$.
133 251 adas
		We may set $b_A = O(b_B + q )$.
134 251 adas
	\end{itemize}
135 251 adas
%	\[
136 251 adas
%	\begin{array}{rcl}
137 251 adas
%	\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
138 251 adas
%	\smallskip
139 251 adas
%	\wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
140 251 adas
%	\smallskip
141 251 adas
%	\wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
142 251 adas
%	\smallskip
143 251 adas
%	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
144 251 adas
%	\\
145 251 adas
%	\smallskip
146 251 adas
%	\wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn &
147 251 adas
%	\forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
148 251 adas
%	\end{array}
149 251 adas
%	\]
150 251 adas
%	\anupam{need length bounding for sharply bounded quantifiers}
151 251 adas
\end{definition}
152 251 adas
153 251 adas
154 251 adas
155 251 adas
\begin{proposition}
156 251 adas
	\label{prop:wit-rfn}
157 251 adas
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
158 251 adas
Conversely, if $A (\vec u \mode l ; \vec x \mode l)$ is true then there is some $w \leq b_A(l)$ such that $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$.
159 251 adas
\end{proposition}
160 251 adas
161 251 adas
162 251 adas
In order to prove Thm.~\ref{thm:soundness} we need the following lemma, essentially giving an interpretation of $\arith^i$ proofs into $\mubci{i-1}$.
163 251 adas
164 251 adas
165 251 adas
\begin{lemma}
166 251 adas
		[Proof interpretation]
167 251 adas
		\label{lem:proof-interp}
168 251 adas
	From a typed-variable normal form $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma  \seqar \Delta$
169 251 adas
	there are $\bc (\charfn{}{i-1})$ functions $ f^\pi_B (\vec u ; \vec x , w)$ for $B\in\Delta$ such that
170 251 adas
	% such that, for any $l, \vec u ; \vec x  , w$, we have:
171 251 adas
	\[
172 251 adas
%	\vec a^\nu = \vec u ,
173 251 adas
%	\vec b^\sigma = \vec u,
174 251 adas
%	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
175 251 adas
%	\ \implies \
176 251 adas
%	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
177 251 adas
	\begin{array}{rl}
178 251 adas
&	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\
179 251 adas
\noalign{\medskip}
180 251 adas
\implies & 	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
181 251 adas
	\end{array}
182 251 adas
	\]
183 251 adas
	for some polynomial $p$.
184 251 adas
%	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
185 251 adas
%	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
186 251 adas
\end{lemma}
187 251 adas
188 251 adas
189 251 adas
190 254 adas
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
191 251 adas
192 254 adas
\begin{proof}
193 254 adas
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
194 254 adas
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
195 254 adas
196 254 adas
197 254 adas
	\paragraph*{Negation}
198 254 adas
	Can assume only on atomic formulae, so no effect.
199 254 adas
200 254 adas
	\paragraph*{Logical rules}
201 254 adas
	Pairing, depairing. Need length-boundedness.
202 254 adas
203 254 adas
	If we have a left conjunction step:
204 254 adas
	\[
205 254 adas
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
206 254 adas
	\]
207 254 adas
	By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
208 254 adas
	\[
209 254 adas
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
210 254 adas
	\quad \implies \quad
211 254 adas
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
212 254 adas
	\]
213 254 adas
	for some polynomial $p$.
214 254 adas
	%
215 254 adas
	We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
216 254 adas
217 254 adas
218 254 adas
	Right disjunction step:
219 254 adas
	\[
220 254 adas
	\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
221 254 adas
	\]
222 254 adas
	$\vec f^\pi_\Delta$ remains the same as that of premiss.
223 254 adas
	Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
224 254 adas
	\[
225 254 adas
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
226 254 adas
	\quad \implies \quad
227 254 adas
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))
228 254 adas
	\]
229 254 adas
	for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
230 254 adas
	We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
231 254 adas
	\paragraph*{Quantifiers}
232 254 adas
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
233 254 adas
234 254 adas
235 254 adas
236 254 adas
	Sharply bounded quantifiers are generalised versions of logical rules.
237 254 adas
	\[
238 254 adas
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
239 254 adas
	\]
240 254 adas
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
241 254 adas
	\[
242 254 adas
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
243 254 adas
	\quad \implies \quad
244 254 adas
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
245 254 adas
	\]
246 254 adas
	with $|f|\leq q(|l|)$.
247 254 adas
248 254 adas
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
249 254 adas
250 254 adas
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
251 254 adas
252 254 adas
253 254 adas
	Right existential:
254 254 adas
	\[
255 254 adas
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
256 254 adas
	\]
257 254 adas
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
258 254 adas
259 254 adas
260 254 adas
	\paragraph*{Contraction}
261 254 adas
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
262 254 adas
263 254 adas
	\[
264 254 adas
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
265 254 adas
	\]
266 254 adas
267 254 adas
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
268 254 adas
	We define:
269 254 adas
	\[
270 254 adas
	f^\pi_A ( \vec u ; \vec x , \vec w  )
271 254 adas
	\quad \dfn \quad
272 254 adas
	\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
273 254 adas
	\]
274 254 adas
275 254 adas
276 254 adas
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
277 254 adas
	\paragraph*{Induction}
278 254 adas
	Corresponds to safe recursion on notation.
279 254 adas
	Suppose final step is (wlog):
280 254 adas
	\[
281 254 adas
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
282 254 adas
	\]
283 254 adas
	\anupam{need to say in normal form part that can assume induction of this form}
284 254 adas
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
285 254 adas
286 254 adas
	Now, by the inductive hypothesis, we have functions $h_i$ such that:
287 254 adas
	\[
288 254 adas
	\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
289 254 adas
	\quad \implies \quad
290 254 adas
	\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
291 254 adas
	\]
292 254 adas
	First let us define $ f$ as follows:
293 254 adas
	\[
294 254 adas
	\begin{array}{rcl}
295 254 adas
	f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
296 254 adas
	f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn &
297 254 adas
	h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
298 254 adas
	\end{array}
299 254 adas
	\]
300 254 adas
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
301 254 adas
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
302 254 adas
303 254 adas
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
304 254 adas
305 254 adas
	\paragraph*{Cut}
306 254 adas
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
307 254 adas
	Otherwise it is a `raisecut':
308 254 adas
	\[
309 254 adas
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
310 254 adas
	\]
311 254 adas
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
312 254 adas
	\[
313 254 adas
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
314 254 adas
	\quad \dfn \quad
315 254 adas
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
316 254 adas
	\]
317 254 adas
\end{proof}
318 254 adas
319 254 adas
320 254 adas
321 254 adas
322 254 adas
323 254 adas
324 251 adas
Now we can prove the soundness result:
325 251 adas
326 251 adas
	\begin{proof}
327 251 adas
		[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
328 251 adas
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form.
329 251 adas
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$.
330 251 adas
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true.
331 251 adas
Now, since all $\vec u$ are normal, we may simply set $l$ to have a longer length than all of these arguments, so the function $f(\vec u;) \dfn \beta (q(\sum \vec u), 1 ; f(\vec u \mode \sum \vec u;) ))$ suffices to finish the proof.
332 251 adas
	\end{proof}