Révision 261 CSL17/tech-report/arithmetic.tex
arithmetic.tex (revision 261) | ||
---|---|---|
22 | 22 |
|
23 | 23 |
The $\basic$ axioms of bounded arithmetic give the inductive definitions and interrelationships of the various function and predicate symbols. |
24 | 24 |
It also states fundamental algebraic properties, e.g.\ $(0,\succ{ } )$ is a free algebra, and, for us, it will also give us certain `typing' information for our function symbols based on their $\bc$ specification, with safe inputs ranging over $\safe$ and normal ones over $\normal$. |
25 |
For instance, we include the following axioms:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.} |
|
26 |
\[ |
|
27 |
\begin{array}{l} |
|
28 |
\forall u^\normal. \safe(u) \\ |
|
29 |
\safe (0) \\ |
|
30 |
\forall x^\safe . \safe (\succ{} x) \\ |
|
31 |
\end{array} |
|
32 |
\qquad |
|
33 |
\begin{array}{l} |
|
34 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
|
35 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
|
36 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
|
37 |
\forall u^\safe .\safe(\hlf{u})\\ |
|
38 |
\forall u^\normal .\safe(|x|) |
|
39 |
\end{array} |
|
40 |
\] |
|
41 |
Notice that we have $\normal \subseteq \safe$. |
|
42 | 25 |
|
26 |
|
|
27 |
Namely, in addition to usual axioms, our $\basic$ includes the following:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.} |
|
28 |
\begin{enumerate}[(a)] |
|
29 |
\item $\forall u^\normal. \safe(u) $ |
|
30 |
\item $\safe (0) $ |
|
31 |
\item $\forall x^\safe . \safe (\succ{} x) $ |
|
32 |
\item $\forall u^\safe .\safe(\hlf{u})$ |
|
33 |
\item $\forall x^\safe, y^\safe . \safe(x+y)$ |
|
34 |
\item $\forall u^\normal, x^\safe . \safe(u\times x) $ |
|
35 |
\item $\forall u^\normal , v^\normal . \safe (u \smsh v)$ |
|
36 |
\item $\forall u^\normal .\safe(|x|)$ |
|
37 |
\end{enumerate} |
|
38 |
%\[ |
|
39 |
%\begin{array}{l} |
|
40 |
%\forall u^\normal. \safe(u) \\ |
|
41 |
%\safe (0) \\ |
|
42 |
%\forall x^\safe . \safe (\succ{} x) \\ |
|
43 |
%\forall u^\safe .\safe(\hlf{u}) |
|
44 |
%\end{array} |
|
45 |
%\qquad |
|
46 |
%\begin{array}{l} |
|
47 |
%\forall x^\safe, y^\safe . \safe(x+y)\\ |
|
48 |
%\forall u^\normal, x^\safe . \safe(u\times x) \\ |
|
49 |
%\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
|
50 |
%\forall u^\normal .\safe(|x|) |
|
51 |
%\end{array} |
|
52 |
%\] |
|
53 |
Notice in particular that we have $\normal \subseteq \safe$. |
|
54 |
% |
|
43 | 55 |
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}: |
56 |
\begin{enumerate}[(1)] |
|
57 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) $ |
|
58 |
\item $\forall x^{\safe}. x \neq \succ{} x$ |
|
59 |
\item $\forall x^{\safe}.0 \leq x$ |
|
60 |
\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) $ |
|
61 |
\item $\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)$ |
|
62 |
\item $\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)$ |
|
63 |
\item $\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)$ |
|
64 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)$ |
|
65 |
\item $|0|=0$ |
|
66 |
\item $\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) $ |
|
67 |
\item $|\succ{}0|=\succ{} 0$ |
|
68 |
\item $\forall x^{\safe}, y^{\safe}. (x\leq y \cimp |x|\leq |y|)$ |
|
69 |
\item $\forall x^{\normal}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)$ |
|
70 |
\item $\forall y^{\normal}. 0 \smsh y=\succ{} 0$ |
|
71 |
\item $\forall x^{\normal}. (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))$ |
|
72 |
\item $\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x$ |
|
73 |
\item $\forall x^{\normal}, y^{\normal}, z^{\normal}. ( |x|= |y| \cimp x\smsh z = y\smsh z)$ |
|
74 |
\item $\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))$ |
|
75 |
\item $\forall x^{\safe}, y^{\safe}. x\leq x+y$ |
|
76 |
\item $\forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))$ |
|
77 |
\item $\forall x^{\safe}, y^{\safe}. x+y=y+x$ |
|
78 |
\item $\forall x^{\safe}. x+0=x$ |
|
79 |
\item $\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)$ |
|
80 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)$ |
|
81 |
\item $\forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)$ |
|
82 |
\item $\forall x^{\safe} 0\cdot x =0$ |
|
83 |
\item $\forall x^{\safe}, y^{\normal}. x\cdot(\succ{}y)=(x\cdot y)+x$ |
|
84 |
\item $\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x$ |
|
85 |
\item $\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)$ |
|
86 |
\item $\forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))$ |
|
87 |
\item $\forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))$ |
|
88 |
\item $\forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))$ |
|
89 |
\end{enumerate} |
|
44 | 90 |
|
45 |
$$ |
|
46 |
%\begin{equation} |
|
47 |
\begin{array}{l} |
|
48 |
\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) \\ |
|
49 |
\forall x^{\safe}. x \neq \succ{} x\\ |
|
50 |
\forall x^{\safe}.0 \leq x\\ |
|
51 |
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\ |
|
52 |
\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\ |
|
53 |
\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\ |
|
54 |
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\ |
|
55 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\ |
|
56 |
|0|=0\\ |
|
57 |
\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\ |
|
58 |
|\succ{}0|=\succ{} 0\\ |
|
59 |
\forall x^{\safe}, y^{\safe}. (x\leq y \cimp |x|\leq |y|)\\ |
|
60 |
\forall x^{\normal}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
|
61 |
\forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
|
62 |
\forall x^{\normal}. (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\ |
|
63 |
\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
|
64 |
\forall x^{\normal}, y^{\normal}, z^{\normal}. ( |x|= |y| \cimp x\smsh z = y\smsh z)\\ |
|
65 |
\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\ |
|
66 |
\forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
|
67 |
\forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))\\ |
|
68 |
\forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
|
69 |
\forall x^{\safe}. x+0=x\\ |
|
70 |
\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
|
71 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
|
72 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)\\ |
|
73 |
\forall x^{\safe} 0\cdot x =0\\ |
|
74 |
\forall x^{\safe}, y^{\normal}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
|
75 |
%\text{\anupam{check above normal/safe! Pretty sure should be other way around.}}\\ |
|
76 |
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
|
77 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
|
78 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\ |
|
79 |
\forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))\\ |
|
80 |
\forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)) |
|
81 |
\end{array} |
|
82 |
%\end{equation} |
|
83 |
$$ |
|
84 | 91 |
|
92 |
%$$ |
|
93 |
%%\begin{equation} |
|
94 |
%\begin{array}{l} |
|
95 |
%\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) \\ |
|
96 |
%\forall x^{\safe}. x \neq \succ{} x\\ |
|
97 |
%\forall x^{\safe}.0 \leq x\\ |
|
98 |
%\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\ |
|
99 |
%\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\ |
|
100 |
%\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\ |
|
101 |
%\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\ |
|
102 |
%\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\ |
|
103 |
%|0|=0\\ |
|
104 |
%\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\ |
|
105 |
%|\succ{}0|=\succ{} 0\\ |
|
106 |
%\forall x^{\safe}, y^{\safe}. (x\leq y \cimp |x|\leq |y|)\\ |
|
107 |
%\forall x^{\normal}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
|
108 |
%\forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
|
109 |
%\forall x^{\normal}. (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\ |
|
110 |
%\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
|
111 |
%\forall x^{\normal}, y^{\normal}, z^{\normal}. ( |x|= |y| \cimp x\smsh z = y\smsh z)\\ |
|
112 |
%\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\ |
|
113 |
%\forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
|
114 |
%\forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))\\ |
|
115 |
%\forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
|
116 |
%\forall x^{\safe}. x+0=x\\ |
|
117 |
%\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
|
118 |
%\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
|
119 |
%\forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)\\ |
|
120 |
%\forall x^{\safe} 0\cdot x =0\\ |
|
121 |
%\forall x^{\safe}, y^{\normal}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
|
122 |
%%\text{\anupam{check above normal/safe! Pretty sure should be other way around.}}\\ |
|
123 |
%\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
|
124 |
%\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
|
125 |
%\forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\ |
|
126 |
%\forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))\\ |
|
127 |
%\forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)) |
|
128 |
%\end{array} |
|
129 |
%%\end{equation} |
|
130 |
%$$ |
|
131 |
% |
|
85 | 132 |
|
86 | 133 |
|
87 | 134 |
|
88 | 135 |
|
89 | 136 |
|
90 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
|
91 |
\begin{proposition} |
|
92 |
[Length induction] |
|
93 |
The axiom schema of formulae, |
|
94 |
\begin{equation} |
|
95 |
\label{eqn:lind} |
|
96 |
( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
|
97 |
\end{equation} |
|
98 |
for formulae $A \in \Sigma^\safe_i$ |
|
99 |
is equivalent to $\cpind{\Sigma^\safe_i}$. |
|
100 |
\end{proposition} |
|
101 |
\begin{proof} |
|
102 |
Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
|
103 |
Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
|
104 |
\end{proof} |
|
105 | 137 |
|
106 |
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\Xi}$, when $A \in \mathcal \Xi$. |
|
107 |
We will freely use this in place of polynomial induction whenever it is convenient. |
|
108 | 138 |
|
109 | 139 |
%\begin{definition} |
110 | 140 |
% [Basic theory] |
... | ... | |
126 | 156 |
% |
127 | 157 |
%Use base theory + sharply bounded quantifiers. |
128 | 158 |
|
159 |
In addition to these axioms, our theories will contain forms of induction, defined below. |
|
129 | 160 |
|
130 |
\begin{definition} |
|
131 |
[Quantifier hierarchy] |
|
132 |
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free. |
|
133 |
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers. |
|
134 |
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers. |
|
135 |
\end{definition} |
|
136 |
|
|
137 |
|
|
138 |
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$. |
|
139 |
The criterion is purely to give an appropriate definition of the hierarchy above. |
|
140 |
|
|
141 | 161 |
%\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
142 | 162 |
|
143 | 163 |
|
... | ... | |
158 | 178 |
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$. |
159 | 179 |
\end{definition} |
160 | 180 |
|
181 |
We will introduce in fact a hierarchy of theories calibrated by the complexity of induction formulae, so we now introduce the appropriate quantifier hierarchy. |
|
161 | 182 |
|
183 |
\begin{definition} |
|
184 |
[Quantifier hierarchy] |
|
185 |
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free. |
|
186 |
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers. |
|
187 |
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers. |
|
188 |
\end{definition} |
|
189 |
|
|
190 |
|
|
191 |
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$. |
|
192 |
The criterion is purely to give an appropriate definition of the hierarchy above. |
|
193 |
|
|
194 |
|
|
162 | 195 |
\begin{definition}\label{def:ariththeory} |
163 | 196 |
Define the theory $\arith^i$ consisting of the $\basic$ axioms, $\cpind{\Sigma^\safe_i } $, |
164 | 197 |
%\begin{itemize} |
... | ... | |
195 | 228 |
\todo{Proof: Patrick? The final two should require PIND.} |
196 | 229 |
\end{example} |
197 | 230 |
|
231 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
|
232 |
\begin{proposition} |
|
233 |
[Length induction] |
|
234 |
The axiom schema of formulae, |
|
235 |
\begin{equation} |
|
236 |
\label{eqn:lind} |
|
237 |
( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
|
238 |
\end{equation} |
|
239 |
for formulae $A \in \Sigma^\safe_i$ |
|
240 |
is equivalent to $\cpind{\Sigma^\safe_i}$. |
|
241 |
\end{proposition} |
|
242 |
\begin{proof} |
|
243 |
Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
|
244 |
Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
|
245 |
\end{proof} |
|
198 | 246 |
|
247 |
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\Xi}$, when $A \in \Xi$. |
|
248 |
We will freely use this in place of polynomial induction whenever it is convenient. |
|
249 |
|
|
250 |
|
|
199 | 251 |
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions} |
200 | 252 |
|
201 |
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall \vec x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$. |
|
253 |
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall \vec x^{\safe}, \exists! y^{\safe}. A_f (\vec u , \vec x , y)$, such that $\Nat \models A_f (\vec u , \vec x , f(\vec u , \vec x))$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$. |
|
254 |
We sometimes explicitly delimit variables as such when it is helpful, writing $A_f (\vec u ; \vec x , y)$. |
|
202 | 255 |
|
203 | 256 |
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine: |
204 | 257 |
\begin{itemize} |
... | ... | |
206 | 259 |
%\item Successor $\succ{}$: $\forall x^{\safe} , \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way. |
207 | 260 |
%\item Predecessor $p$: $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$ |
208 | 261 |
\item Conditional $C$: |
209 |
$$\begin{array}{ll} |
|
210 |
\forall x^{\safe} , y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=0)\cand (y=y_0)\\ |
|
211 |
& \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\ |
|
212 |
& \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\ |
|
262 |
$$ |
|
263 |
\forall x^{\safe} , y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. |
|
264 |
\left( |
|
265 |
\begin{array}{rl} |
|
266 |
&\exists z^{\safe}.x=\succ{0}z \cand y=y_0 \\ |
|
267 |
\cor& \exists z^{\safe}.x=\succ{1}z \cand y=y_1 |
|
213 | 268 |
\end{array} |
269 |
\right) |
|
214 | 270 |
$$ |
271 |
%$$\begin{array}{ll} |
|
272 |
%\forall x^{\safe} , y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=0)\cand (y=y_0)\\ |
|
273 |
% & \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\ |
|
274 |
% & \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\ |
|
275 |
%\end{array} |
|
276 |
%$$ |
|
215 | 277 |
%\item Addition: |
216 | 278 |
%$\forall^{\safe} x, y, \exists^{\safe} z. z=x+y$. |
217 | 279 |
\item Prefix: |
Formats disponibles : Unified diff