Révision 260 CSL17/tech-report/preliminaries.tex

preliminaries.tex (revision 260)
195 195
$\mubc =\fph$. Furthermore, for $i\geq 1$, $\mubc^{i-1} = \fphi{i}$.
196 196
 \end{theorem}
197 197

  
198
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{bellantoni1995fph}.
198
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{Bellantoni95}.
199 199
%
200 200
%\medskip 
201 201
%\noindent
......
228 228
  If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions.
229 229
 \begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}]
230 230
 	\label{lem:polychecking}
231
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function  polynomial checking function on $\vec u$.
231
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded polynomial checking function on $\vec u$.
232 232
 \end{lemma}
233 233

  
234 234
In particular, we also have the following strengthening of Thm.~\ref{thm:mubc},

Formats disponibles : Unified diff