Révision 260 CSL17/tech-report/completeness.tex
completeness.tex (revision 260) | ||
---|---|---|
53 | 53 |
\right) \\ |
54 | 54 |
\cor & \left( |
55 | 55 |
\begin{array}{ll} |
56 |
z\neq 0 |
|
56 |
%z\neq 0 |
|
57 |
z=\succ{1} p z |
|
57 | 58 |
& \cand\ \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\ |
58 | 59 |
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) |
59 | 60 |
\end{array} |
... | ... | |
111 | 112 |
Suppose that $\exists x^\safe , y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. |
112 | 113 |
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. |
113 | 114 |
%\todo{verify $z\neq 0$ disjunct.} |
114 |
Then $z \neq 0$ holds. Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
|
115 |
%Then $z \neq 0$ holds. |
|
116 |
Then $z=\succ{1} p z$ holds. |
|
117 |
Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
|
115 | 118 |
$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that |
116 | 119 |
$\exists y^\safe . (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce |
117 | 120 |
$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction |
Formats disponibles : Unified diff