Révision 260

CSL17/tech-report/arithmetic.tex (revision 260)
198 198

  
199 199
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
200 200

  
201
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
201
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  \vec x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
202 202
 
203 203
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine:
204 204
\begin{itemize}
......
207 207
%\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
208 208
\item Conditional $C$: 
209 209
$$\begin{array}{ll}
210
\forall x^{\safe} , y_{\epsilon}^{\safe}, y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
210
\forall x^{\safe} ,  y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=0)\cand (y=y_0)\\
211 211
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\
212 212
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\
213 213
\end{array}
CSL17/tech-report/completeness.tex (revision 260)
53 53
	\right) \\
54 54
	\cor & \left(
55 55
	\begin{array}{ll}
56
	z\neq 0 
56
	%z\neq 0
57
	z=\succ{1} p z 
57 58
	& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
58 59
	& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) 
59 60
	\end{array}
......
111 112
	Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
112 113
	We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. 
113 114
	%\todo{verify $z\neq 0$ disjunct.} 
114
	Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
115
	%Then $z \neq 0$ holds. 
116
	Then $z=\succ{1} p z$ holds.
117
	Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
115 118
	$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
116 119
	$\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce 
117 120
	$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
CSL17/tech-report/ph-biblio.bib (revision 260)
5 5
	note={\url{http://www.anupamdas.com/fph-unbounded-arithmetic.pdf}}
6 6
	}
7 7

  
8
@incollection{bellantoni1995fph,
9
	title={Predicative recursion and the polytime hierarchy},
10
	author={Bellantoni, Stephen},
11
	booktitle={Feasible Mathematics II},
12
	pages={15--29},
13
	year={1995},
14
	publisher={Springer}
15
}
16 8

  
17

  
18 9
@inproceedings{Lasson11,
19 10
  author    = {Marc Lasson},
20 11
  title     = {Controlling Program Extraction in Light Logics},
CSL17/tech-report/preliminaries.tex (revision 260)
195 195
$\mubc =\fph$. Furthermore, for $i\geq 1$, $\mubc^{i-1} = \fphi{i}$.
196 196
 \end{theorem}
197 197

  
198
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{bellantoni1995fph}.
198
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{Bellantoni95}.
199 199
%
200 200
%\medskip 
201 201
%\noindent
......
228 228
  If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions.
229 229
 \begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}]
230 230
 	\label{lem:polychecking}
231
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function  polynomial checking function on $\vec u$.
231
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded polynomial checking function on $\vec u$.
232 232
 \end{lemma}
233 233

  
234 234
In particular, we also have the following strengthening of Thm.~\ref{thm:mubc},

Formats disponibles : Unified diff