Révision 260
CSL17/tech-report/arithmetic.tex (revision 260) | ||
---|---|---|
198 | 198 |
|
199 | 199 |
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions} |
200 | 200 |
|
201 |
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$. |
|
201 |
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall \vec x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
|
|
202 | 202 |
|
203 | 203 |
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine: |
204 | 204 |
\begin{itemize} |
... | ... | |
207 | 207 |
%\item Predecessor $p$: $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$ |
208 | 208 |
\item Conditional $C$: |
209 | 209 |
$$\begin{array}{ll} |
210 |
\forall x^{\safe} , y_{\epsilon}^{\safe}, y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
|
|
210 |
\forall x^{\safe} , y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=0)\cand (y=y_0)\\
|
|
211 | 211 |
& \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\ |
212 | 212 |
& \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\ |
213 | 213 |
\end{array} |
CSL17/tech-report/completeness.tex (revision 260) | ||
---|---|---|
53 | 53 |
\right) \\ |
54 | 54 |
\cor & \left( |
55 | 55 |
\begin{array}{ll} |
56 |
z\neq 0 |
|
56 |
%z\neq 0 |
|
57 |
z=\succ{1} p z |
|
57 | 58 |
& \cand\ \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\ |
58 | 59 |
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) |
59 | 60 |
\end{array} |
... | ... | |
111 | 112 |
Suppose that $\exists x^\safe , y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. |
112 | 113 |
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. |
113 | 114 |
%\todo{verify $z\neq 0$ disjunct.} |
114 |
Then $z \neq 0$ holds. Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
|
115 |
%Then $z \neq 0$ holds. |
|
116 |
Then $z=\succ{1} p z$ holds. |
|
117 |
Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
|
115 | 118 |
$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that |
116 | 119 |
$\exists y^\safe . (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce |
117 | 120 |
$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction |
CSL17/tech-report/ph-biblio.bib (revision 260) | ||
---|---|---|
5 | 5 |
note={\url{http://www.anupamdas.com/fph-unbounded-arithmetic.pdf}} |
6 | 6 |
} |
7 | 7 |
|
8 |
@incollection{bellantoni1995fph, |
|
9 |
title={Predicative recursion and the polytime hierarchy}, |
|
10 |
author={Bellantoni, Stephen}, |
|
11 |
booktitle={Feasible Mathematics II}, |
|
12 |
pages={15--29}, |
|
13 |
year={1995}, |
|
14 |
publisher={Springer} |
|
15 |
} |
|
16 | 8 |
|
17 |
|
|
18 | 9 |
@inproceedings{Lasson11, |
19 | 10 |
author = {Marc Lasson}, |
20 | 11 |
title = {Controlling Program Extraction in Light Logics}, |
CSL17/tech-report/preliminaries.tex (revision 260) | ||
---|---|---|
195 | 195 |
$\mubc =\fph$. Furthermore, for $i\geq 1$, $\mubc^{i-1} = \fphi{i}$. |
196 | 196 |
\end{theorem} |
197 | 197 |
|
198 |
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{bellantoni1995fph}.
|
|
198 |
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{Bellantoni95}.
|
|
199 | 199 |
% |
200 | 200 |
%\medskip |
201 | 201 |
%\noindent |
... | ... | |
228 | 228 |
If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions. |
229 | 229 |
\begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}] |
230 | 230 |
\label{lem:polychecking} |
231 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function polynomial checking function on $\vec u$.
|
|
231 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded polynomial checking function on $\vec u$. |
|
232 | 232 |
\end{lemma} |
233 | 233 |
|
234 | 234 |
In particular, we also have the following strengthening of Thm.~\ref{thm:mubc}, |
Formats disponibles : Unified diff