root / CSL17 / tech-report / soundness.tex @ 259
Historique | Voir | Annoter | Télécharger (17,17 ko)
1 |
\section{Soundness} |
---|---|
2 |
\label{sect:soundness} |
3 |
In this section we show that the representable functions of our theories $\arith^i$ are in $\fphi i$ (`soundness'). |
4 |
The main result is the following: |
5 |
|
6 |
\begin{theorem} |
7 |
\label{thm:soundness} |
8 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
9 |
\end{theorem} |
10 |
|
11 |
|
12 |
|
13 |
The problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions, Lemma~\ref{lem:polychecking}. |
14 |
For this we will use \emph{length-bounded} witnessing argument, borrowing a similar idea from Bellantoni's work \cite{Bellantoni95}. |
15 |
|
16 |
|
17 |
\begin{definition} |
18 |
[Length bounded (in)equality] |
19 |
%We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
20 |
%\[ |
21 |
%x \mode l = y \mode l |
22 |
%\] |
23 |
%which is definable by safe recursion on $l$: |
24 |
%\[ |
25 |
%\begin{array}{rcl} |
26 |
%\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\ |
27 |
%\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y )) ) |
28 |
%\end{array} |
29 |
%\] |
30 |
We define \emph{length-bounded inequality} as: |
31 |
\[ |
32 |
\begin{array}{rcl} |
33 |
\leqfn (0 ; x ,y) & \dfn & \cond(; \bit (0;x), 1, \bit (0;y) ) \\ |
34 |
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; \cond(;\bit (\succ i l ; x) , \bit(\succ i l ; y),0 ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) ) |
35 |
\end{array} |
36 |
\] |
37 |
\end{definition} |
38 |
|
39 |
Notice that $\leqfn (l; x,y) = 1$ just if $x \mode l \leq y \mode l$. |
40 |
We can also define $\eq( l; x,y)$ as $\andfn (;\leq(l;x,y),\leq(l;y,x))$. |
41 |
|
42 |
%\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
43 |
% |
44 |
%Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems. |
45 |
|
46 |
|
47 |
In the presence of a compatible sorting, we may easily define functions that \emph{evaluate} safe formulae in $\mubc$: |
48 |
|
49 |
|
50 |
\begin{proposition} |
51 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
52 |
\end{proposition} |
53 |
|
54 |
\begin{definition} |
55 |
[Length bounded characteristic functions] |
56 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
57 |
% If $A$ is a $\Pi_{i}$ formula then: |
58 |
\[ |
59 |
\begin{array}{rcl} |
60 |
\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
61 |
\smallskip |
62 |
% \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
63 |
% \smallskip |
64 |
\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\ |
65 |
\smallskip |
66 |
\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\ |
67 |
\smallskip |
68 |
\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) |
69 |
% \end{array} |
70 |
% \quad |
71 |
% \begin{array}{rcl} |
72 |
\\ \smallskip |
73 |
\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
74 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
75 |
0 & \text{otherwise} |
76 |
\end{cases} \\ |
77 |
\smallskip |
78 |
\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
79 |
\begin{cases} |
80 |
0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
81 |
1 & \text{otherwise} |
82 |
\end{cases} |
83 |
\end{array} |
84 |
\] |
85 |
\end{definition} |
86 |
|
87 |
|
88 |
We will use the programs $\charfn{}{}$ in the witness functions we define below. |
89 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$. |
90 |
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'. |
91 |
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation. |
92 |
|
93 |
|
94 |
\begin{definition} |
95 |
[Length bounded witness function] |
96 |
For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i-1})$ and its \emph{bounding polynomial} $b_A (l)$ as follows: |
97 |
\begin{itemize} |
98 |
\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$ and we set $b_A (l) = 1$. |
99 |
\item If $A$ is $B \cor C$ then we may set $b_A = O(b_B + b_C)$ and define $ \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) )$. |
100 |
% \[ |
101 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
102 |
% \quad \dfn \quad |
103 |
% \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
104 |
% \] |
105 |
% and we may set $b_A = O(b_B + b_C)$. |
106 |
\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$. |
107 |
% \item If $A$ is $B \cand C$ then |
108 |
% \[ |
109 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
110 |
% \quad \dfn \quad |
111 |
% \andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
112 |
% \] |
113 |
% and we may set $b_A = O(b_B + b_C)$. |
114 |
\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ we appeal to sharply bounded closure, Lemma~\ref{lem:sharply-bounded-recursion}, to define |
115 |
\( |
116 |
\wit{\vec u ; \vec x}{A} |
117 |
\dfn |
118 |
\forall u \leq |t|. |
119 |
\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) ) |
120 |
\) |
121 |
%appealing to Lemma~\ref{lem:sharply-bounded-recursion}, |
122 |
and |
123 |
we set |
124 |
$b_A = O(b_{B(t)}^2 )$. |
125 |
\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$. |
126 |
\item If $A$ is $\exists x^\safe . B(x) $ then |
127 |
\( |
128 |
\wit{\vec u ; \vec x}{A} |
129 |
\dfn |
130 |
\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w )) |
131 |
\) |
132 |
where $q$ is obtained by the polychecking and bounded minimisation properties, Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation}, for $\wit{\vec u ; \vec x , x}{B(x)}$. |
133 |
We may set $b_A = O(b_B + q )$. |
134 |
\end{itemize} |
135 |
% \[ |
136 |
% \begin{array}{rcl} |
137 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
138 |
% \smallskip |
139 |
% \wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
140 |
% \smallskip |
141 |
% \wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
142 |
% \smallskip |
143 |
% \wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
144 |
% \\ |
145 |
% \smallskip |
146 |
% \wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
147 |
% \forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
148 |
% \end{array} |
149 |
% \] |
150 |
% \anupam{need length bounding for sharply bounded quantifiers} |
151 |
\end{definition} |
152 |
|
153 |
|
154 |
|
155 |
\begin{proposition} |
156 |
\label{prop:wit-rfn} |
157 |
If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true. |
158 |
Conversely, if $A (\vec u \mode l ; \vec x \mode l)$ is true then there is some $w \leq b_A(l)$ such that $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$. |
159 |
\end{proposition} |
160 |
|
161 |
|
162 |
In order to prove Thm.~\ref{thm:soundness} we need the following lemma, essentially giving an interpretation of $\arith^i$ proofs into $\mubci{i-1}$. |
163 |
|
164 |
|
165 |
\begin{lemma} |
166 |
[Proof interpretation] |
167 |
\label{lem:proof-interp} |
168 |
From a typed-variable normal form $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma \seqar \Delta$ |
169 |
there are $\bc (\charfn{}{i-1})$ functions $ f^\pi_B (\vec u ; \vec x , w)$ for $B\in\Delta$ such that |
170 |
% such that, for any $l, \vec u ; \vec x , w$, we have: |
171 |
\[ |
172 |
% \vec a^\nu = \vec u , |
173 |
% \vec b^\sigma = \vec u, |
174 |
% \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1 |
175 |
% \ \implies \ |
176 |
% \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
177 |
\begin{array}{rl} |
178 |
& \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\ |
179 |
\noalign{\medskip} |
180 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
181 |
\end{array} |
182 |
\] |
183 |
for some polynomial $p$. |
184 |
% \anupam{Need $\vec w \mode p(l)$ for some $p$.} |
185 |
% \anupam{$l$ may occur freely in the programs $f^\pi_B$} |
186 |
\end{lemma} |
187 |
|
188 |
|
189 |
|
190 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
191 |
|
192 |
\begin{proof} |
193 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
194 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
195 |
|
196 |
|
197 |
\paragraph*{Negation} |
198 |
Can assume only on atomic formulae, so no effect. |
199 |
|
200 |
\paragraph*{Logical rules} |
201 |
Pairing, depairing. Need length-boundedness. |
202 |
|
203 |
If we have a left conjunction step: |
204 |
\[ |
205 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
206 |
\] |
207 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
208 |
\[ |
209 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
210 |
\quad \implies \quad |
211 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
212 |
\] |
213 |
for some polynomial $p$. |
214 |
% |
215 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
216 |
|
217 |
|
218 |
Right disjunction step: |
219 |
\[ |
220 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
221 |
\] |
222 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
223 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
224 |
\[ |
225 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
226 |
\quad \implies \quad |
227 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
228 |
\] |
229 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
230 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
231 |
\paragraph*{Quantifiers} |
232 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
233 |
|
234 |
|
235 |
|
236 |
Sharply bounded quantifiers are generalised versions of logical rules. |
237 |
\[ |
238 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
239 |
\] |
240 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
241 |
\[ |
242 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
243 |
\quad \implies \quad |
244 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
245 |
\] |
246 |
with $|f|\leq q(|l|)$. |
247 |
|
248 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
249 |
|
250 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
251 |
|
252 |
|
253 |
Right existential: |
254 |
\[ |
255 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
256 |
\] |
257 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
258 |
|
259 |
|
260 |
\paragraph*{Contraction} |
261 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
262 |
|
263 |
\[ |
264 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
265 |
\] |
266 |
|
267 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
268 |
We define: |
269 |
\[ |
270 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
271 |
\quad \dfn \quad |
272 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
273 |
\] |
274 |
|
275 |
|
276 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
277 |
\paragraph*{Induction} |
278 |
Corresponds to safe recursion on notation. |
279 |
Suppose final step is (wlog): |
280 |
\[ |
281 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
282 |
\] |
283 |
\anupam{need to say in normal form part that can assume induction of this form} |
284 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
285 |
|
286 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
287 |
\[ |
288 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
289 |
\quad \implies \quad |
290 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
291 |
\] |
292 |
First let us define $ f$ as follows: |
293 |
\[ |
294 |
\begin{array}{rcl} |
295 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
296 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
297 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
298 |
\end{array} |
299 |
\] |
300 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
301 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
302 |
|
303 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
304 |
|
305 |
\paragraph*{Cut} |
306 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
307 |
Otherwise it is a `raisecut': |
308 |
\[ |
309 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
310 |
\] |
311 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
312 |
\[ |
313 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
314 |
\quad \dfn \quad |
315 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
316 |
\] |
317 |
\end{proof} |
318 |
|
319 |
|
320 |
|
321 |
|
322 |
|
323 |
|
324 |
Now we can prove the soundness result: |
325 |
|
326 |
\begin{proof} |
327 |
[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
328 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form. |
329 |
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$. |
330 |
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true. |
331 |
Now, since all $\vec u$ are normal, we may simply set $l$ to have a longer length than all of these arguments, so the function $f(\vec u;) \dfn \beta (q(\sum \vec u), 1 ; f(\vec u \mode \sum \vec u;) ))$ suffices to finish the proof. |
332 |
\end{proof} |