Révision 259

CSL17/tech-report/arithmetic.tex (revision 259)
28 28
\forall u^\normal. \safe(u) \\
29 29
\safe (0) \\
30 30
\forall x^\safe . \safe (\succ{} x) \\
31
\forall x^\safe . 0 \neq \succ{} (x) \\
32
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
33
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )  
34 31
\end{array}
35 32
\qquad
36 33
\begin{array}{l}
......
74 71
\forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)\\
75 72
\forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)\\
76 73
\forall x^{\safe}       0\cdot x =0\\
77
\forall x^{\normal}, y^{\safe}.  x\cdot(\succ{}y)=(x\cdot y)+x\\
74
\forall x^{\safe}, y^{\normal}.  x\cdot(\succ{}y)=(x\cdot y)+x\\
75
%\text{\anupam{check above normal/safe! Pretty sure should be other way around.}}\\
78 76
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\
79 77
\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\
80 78
\forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\
......
88 86

  
89 87

  
90 88

  
89

  
91 90
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
92 91
\begin{proposition}
93 92
	[Length induction]
......
182 181
	\end{remark}
183 182

  
184 183

  
184
\begin{example}
185
	[Some basic theorems]
186
	We give proofs of the following, that are sometimes included as basic axioms, in $\arith^1$:
187
	\[
188
	\begin{array}{l}
189
	\forall x^\safe . 0 \neq \succ{} (x) \\
190
	\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
191
	\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )  \\
192
	\forall u^\normal ,x^\safe . u \succ{} x = u + ux
193
	\end{array}
194
	\]
195
	\todo{Proof: Patrick? The final two should require PIND.}
196
\end{example}
185 197

  
186 198

  
187

  
188 199
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
189 200

  
190 201
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.

Formats disponibles : Unified diff