Statistiques
| Révision :

root / CSL17 / tech-report / main.tex @ 259

Historique | Voir | Annoter | Télécharger (2,58 ko)

1 254 adas
\documentclass[a4paper]{article}
2 251 adas
3 251 adas
\usepackage{amsmath}
4 251 adas
\usepackage{amsthm}
5 251 adas
\usepackage{amssymb}
6 251 adas
\usepackage{microtype}
7 251 adas
\usepackage[dvipsnames]{xcolor}
8 251 adas
\usepackage{hyperref}
9 251 adas
10 251 adas
11 251 adas
12 251 adas
\bibliographystyle{plainurl}% the recommended bibstyle
13 251 adas
14 251 adas
\usepackage[lutzsyntax]{virginialake}
15 251 adas
\input{ph-macros}
16 251 adas
17 254 adas
\begin{document}
18 251 adas
19 254 adas
\title{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic}
20 251 adas
21 251 adas
\author{Patrick Baillot}
22 251 adas
\author{Anupam Das}
23 251 adas
24 251 adas
25 251 adas
26 254 adas
27 251 adas
\maketitle
28 251 adas
29 251 adas
\begin{abstract}
30 251 adas
We consider extensions of theories based on the Bellantoni-Cook function algebra for polynomial time functions ($\fptime$) by induction principles without bounds on quantifiers. Instead, we limit quantification to `safe' arguments and show that the provably total functions are just those of the functional polynomial hierarchy ($\fph$). Our witness extraction proof relies on \emph{free-cut elimination} in the logic, making use of the \emph{witness function method}, due to Buss, rather than realisability and Dialectica approaches more common in implicit complexity. Our results closely resemble analogous ones from bounded arithmetic, only for an unbounded setting, and the proof generalises those for previous approaches characterising $\fptime$ via ramified theories.
31 251 adas
%\patrick{Remove: We present further comparisons to the bounded arithmetic setting and give tiered arithmetic theories analogous to the Si2 and Vi hierarchies of bounded arithmetic.}
32 251 adas
\end{abstract}
33 251 adas
%\begin{abstract}
34 251 adas
%We consider extensions of equational theories based on the Bellantoni-Cook function algebra for FPTIME by induction principles without bounds on quantifiers. Instead, we limit quantification to 'safe' variables and show that the provably total functions are just those of FPH. This closely resembles analogous results from bounded arithmetic, only for an unbounded setting, and the proof generalises those for previous approaches characterising FPTIME via the Bellantoni-Cook framework. We present further comparisons to the bounded arithmetic setting and give two-sorted arithmetic theories analogous to the Si2 and Vi hierarchies of bounded arithmetic.
35 251 adas
% \end{abstract}
36 251 adas
37 251 adas
\input{intro}
38 251 adas
\input{preliminaries}
39 251 adas
%\input{sequence-coding}
40 251 adas
\input{arithmetic}
41 251 adas
\input{soundness}
42 251 adas
\input{completeness}
43 251 adas
%\input{further}
44 251 adas
45 251 adas
\input{conclusions}
46 251 adas
47 251 adas
48 251 adas
49 251 adas
%\subparagraph*{Acknowledgements.}
50 251 adas
%
51 251 adas
%I want to thank \dots
52 251 adas
53 251 adas
54 251 adas
%%
55 251 adas
%% Bibliography
56 251 adas
%%
57 251 adas
58 251 adas
%% Either use bibtex (recommended),
59 251 adas
60 257 adas
%\newpage
61 251 adas
\bibliographystyle{alpha}
62 251 adas
\bibliography{ph-biblio}
63 251 adas
64 251 adas
%% .. or use the thebibliography environment explicitely
65 251 adas
66 251 adas
\newpage
67 251 adas
\appendix
68 254 adas
69 251 adas
%%\input{pv-theories}
70 254 adas
\input{appendix-sequent-calculus}
71 254 adas
72 251 adas
73 251 adas
\end{document}