Statistiques
| Révision :

root / CSL17 / tech-report / pv-theories.tex @ 256

Historique | Voir | Annoter | Télécharger (14,92 ko)

1
\section{An extension of Bellantoni's theory PV for PH}
2

    
3
PVBC+FCA+ safe induction characterises PH?
4

    
5
We differ slightly from Bellantoni's theory, using  a mismatch of pvbc and qpvbc.
6
This is for simplicity, since 
7

    
8
\subsection{Base theory}
9

    
10
Let us begin with a variation of the base theory of $\pvbci{(0)}$.
11

    
12
\begin{definition}
13
	[Basic theory]
14
	We have two types/sorts: $\normal$ (normal) and $\safe$ (safe).
15
	Our language consists of the following:
16
	\begin{itemize}
17
		\item Normal and safe variables $x^\normal_i , x^\safe_i$. (sometimes write $u$, $x$ , or $\vec u; \vec x$ without superscripts).
18
%		\item Constant symbol $0^\safe$.
19
%		\item Function symbols $\succ{i}^{\safe \to \safe}$, for $i = 0,1$. (Simply written $\succ i^\safe (;x)$.
20
		\item (all initial symbols from BC with their natural typing, plus a recursion scheme. Have the defining axioms too.)
21
		\item The following interrelations between safe and normal terms:
22
		\begin{itemize}
23
			\item For each normal variable $x^\normal$ a safe variable $x^{\normal\safe}$.
24
			\item For each normal function symbol $f^\normal$ a safe function symbol $f^{\normal\safe}$.
25
			\item For each normal term $t = f^\normal (\vec s ; \vec t)$, we define $t^\safe$ as $f^{\normal\safe} (\vec s ; \vec t)$, and if $t$ is $x^\normal$ then $t^\safe$ as $x^{\normal\safe}$.
26
			\item We have the axioms $t^\safe = t$.
27
		\end{itemize}
28
		\item We have function symbols for the characteristic functions of each quantifier-free predicate. I.e.,
29
		\[
30
		f_A (\vec u ; \vec x) = 1
31
		\quad \ciff \quad
32
		A(\vec u ; \vec x)
33
		\]
34
		where $A$ is quantifier-free. (this is just $\wit{}{}$ for q.f.\ formulae.)
35

    
36
		(maybe use $\chi[A]$ for characteristic, to avoid subscripts)
37
		\item Open induction, i.e.\ quantifier-free induction, on normal variables:
38
		\[
39
		\forall \vec u ; \vec x.
40
		(A(0) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 0 u ) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 1 u ) ))
41
		\cimp \forall u^\normal . A( u ))
42
		\]
43
		where $\vec u ; \vec x $ are all the free variables of $A(0)$.
44
	\end{itemize}
45
\end{definition}
46

    
47
The following was essentially proved by Bellantoni in his thesis:
48

    
49
\begin{theorem}
50
	[Bellantoni]
51
	$\pvbci{0}$ proves the totality of just the polynomial-time functions.
52
\end{theorem}
53

    
54
\nb{Notice that induction can be assumed to be simply functional, due to comprehension function symbols. This is more in the spirit of, say, 2nd order subsystems of arithmetic, like in reverse mathematics.}
55

    
56
\anupam{Hold on, the above should be fairly immediate, the interesting result is for $\pvbci 1$, which we should perhaps state later.}
57

    
58
\subsection{Extensions to theories for the polynomial hierarchy}
59

    
60
We now will associate a rank to new function symbols based on the complexity of formulae they characterise.
61

    
62
\anupam{Ranks are necessary since we do not have sharply bounded quantifiers to reason about sequences. Check what Krajicek does, probably has the latter.}
63

    
64
\begin{definition}
65
[Quantifier hierarchy and functional comprehension]
66
We mutually define the \emph{safe arithmetical hierarchy} and functions of rank $i$ as follows:
67
	\begin{itemize}
68
		\item All functions from the basic theory have \emph{rank} 0.
69
		\item $\Sigma^\safe_0 = \Pi^\safe_0$ is the set of quantifier-free formulae with just functions symbols of rank $0$.
70
		\item The functions symbols of rank $i$ are the characteristic functions of $\Sigma^\safe_i$ formulae.
71
		\item $\Sigma^\safe_{i+1}$ is the least class containing:
72
		\begin{itemize}
73
			\item $\Pi^\safe_i$.
74
			\item Atomic formulae $s=t$ where $s$ and $t$ contain only function symbols of rank $\leq i+1$.
75
			\item Closed under $\cor , \cand , \exists^\safe$.
76
		\end{itemize}
77
		\item $\Pi^\safe_{i+1} $ is...
78
	\end{itemize}
79
\end{definition}
80

    
81
\anupam{check the parameters/subscripts above! Aim for:
82
	
83
	rank = $\mu$ nesting = quant alt = level - 1
84
	}
85

    
86
\nb{Wait, check: do we want characteristic functions or functional-comprehension functions? Compare with Krajicek.}
87

    
88

    
89
Over the next two sections we will show that the provably total functions of $\pvbci i+1$ are just 
90

    
91
\subsection{Soundness}
92
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
93

    
94
The following is our main result:
95
\begin{theorem}
96
	If $\pvbci {i+1} \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are rank $i $ functions $\vec f (\vec u ; \vec x)$ such that $\pvbci {i+1} \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
97
\end{theorem}
98

    
99
\begin{corollary}
100
The provably total functions of $\pvbci i+1$ are in $\fphi i$.
101
\end{corollary}
102

    
103
\begin{definition}
104
	[Witness predicate]
105
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
106
	If $A$ is a $\Pi_{i}$ formula then:
107
	\[
108
	\begin{array}{rcl}
109
	\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
110
	\smallskip
111
	\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
112
	\smallskip
113
	\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
114
	\smallskip
115
	\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
116
	\smallskip
117
	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
118
	1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
119
	0 & \text{otherwise} 
120
	\end{cases} \\
121
	\smallskip
122
	\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
123
	\begin{cases}
124
	0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
125
	1 & \text{otherwise}
126
	\end{cases}
127
	\end{array}
128
	\]
129
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
130
	\[
131
	\begin{array}{rcl}
132
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
133
	\smallskip
134
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
135
	\smallskip
136
	\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
137
	\smallskip
138
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
139
	\end{array}
140
	\]
141
	
142
	
143
\end{definition}
144

    
145
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
146

    
147
\begin{proposition}
148
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
149
\end{proposition}
150

    
151
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$}
152

    
153
Before proving the main theorem, we will need the following `witnessing lemma':
154

    
155
\begin{lemma}
156
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that 
157
	\[
158
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
159
	\]
160
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
161
\end{lemma}
162
\begin{proof}
163
	By induction on the size of a $\pvbci{i+1} $ proof. 
164
	Interesting steps below:
165
	\begin{itemize}
166
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
167
		\item $\exists$-right.
168
		\[
169
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
170
		\]
171
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
172
		\[
173
		\pvbci{i+1} \proves 
174
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
175
		\cimp
176
		\left(
177
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
178
		\cor
179
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
180
		\right)
181
		\]
182
		(just use $t$ as one of the witness functions)
183
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
184
		\item Contraction-right:
185
		\[
186
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
187
		\]
188
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
189
		\[
190
		todo
191
		\]
192
		(just use conditional with a call to $\Wit{}{}$)
193
		\item induction
194
		\[
195
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
196
		\]
197
	\end{itemize}
198
\end{proof}
199

    
200
\subsection{Completeness}
201
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$:
202

    
203
\begin{theorem}
204
	Every $\mubci i$ function is definable in $\pvbci {i+1}$.
205
\end{theorem}
206

    
207
\anupam{This should be simple, right?}
208

    
209
\nb{WoP known as `minimization' principles in bounded arithmetic}
210
\begin{theorem}
211
	[Well ordering property]
212
	\[
213
	\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists  x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) )
214
	\]
215
\end{theorem}
216
\begin{proof}
217
	We work in $\pvbci{i+1}$ and show the contrapositive. 
218
	Suppose:
219
	\begin{equation}
220
	\label{eqn:no-least}
221
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
222
	\end{equation}
223
	We show that,
224
	\begin{equation}
225
	\label{eqn:ih-wop}
226
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
227
	\end{equation}
228
	by polynomial induction on $x$.
229
	
230
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
231
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
232
	
233
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
234
	
235
	Suppose that $B(x)$ and let us show that $B(2x)$.
236
	Let $y \leq a - 2x$ such that $\cnot A(y)$. 
237
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
238
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
239
	
240
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
241
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
242
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
243
\end{proof}
244

    
245

    
246
\begin{theorem}
247
	
248
\end{theorem}
249

    
250

    
251
\subsection{What we want for WoP}
252
From bounded arithmetic:
253

    
254
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
255

    
256
\subsection{Completeness proof idea}
257
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
258
\[
259
\proves A_f (\vec u ; \vec x , y)
260
\quad 
261
\iff
262
\quad
263
f(\vec u ; \vec x) = y
264
\]
265
and $A_f$ is provably total in $\pvbci{i+1}$.
266

    
267
For the $\mu$ case, say we have the function:
268
\[
269
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
270
\]
271
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
272
We define $A(\vec u ; \vec x , z)$ as:
273
\[
274
\begin{array}{rl}
275
&\left(
276
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
277
\right) \\
278
\cor & \left(
279
\begin{array}{ll}
280
z\neq 0 
281
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
282
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) 
283
\end{array}
284
\right)
285
\end{array}
286
\]
287
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
288

    
289

    
290

    
291
What about, say recursion on a formula? Need a form of `ranked comprehension'?
292
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
293
\[
294
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
295
\implies
296
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
297
\]
298

    
299
Otherwise, can we use definability of computations? E.g., if:
300
\[
301
\begin{array}{rcl}
302
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
303
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
304
\end{array}
305
\]
306
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
307
We define $A_f (u ,\vec u ; \vec x , y)$ as:
308
\[
309
\exists z^\safe . \left(
310
\begin{array}{ll}
311
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
312
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
313
\end{array}
314
\right)
315
\]
316

    
317
(Can we really assume $z$ is safe here?)
318

    
319

    
320
POINT: for whatever formulation, we need to prove:
321
\[
322
\exists y^\safe . A_f (a , \vec u ; \vec x , y) 
323
\quad \seqar \quad
324
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
325
\]
326

    
327
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. 
328
Therefore need 'sharply bounded' quantification for normal variables?
329

    
330
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation.
331

    
332
GOALS:
333
\begin{enumerate}
334
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
335
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
336
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
337
	\item (if time) allow both bounded and safe quantifiers?
338
\end{enumerate}
339

    
340

    
341

    
342
FCA:
343
\[
344
\exists f^\safe . \forall \vec u ; \vec x .
345
\left(
346
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x))
347
\right)
348
\]
349
(with typing information)
350
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
351

    
352
\subsection{Delineating levels using function ranks}
353

    
354

    
355
\subsection{A second-order theory}
356
From here we can rather simply define a theory complete for PH.
357
However, delineating the levels is a little cumbersome, due to the formal necessity of infinitely many ranks.
358

    
359
\begin{definition}
360
	[Axioms]
361
	The \emph{functional comprehension} schema is the following:
362
	\[
363
	\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
364
	\]
365
	(can parametrise by which $A$ permitted)
366
	
367
	The \emph{recursion} schema is:
368
	\[
369
	\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
370
	\left(
371
	\begin{array}{rl}
372
	& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
373
	\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
374
	\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
375
	\end{array}
376
	\right)
377
	\]
378
	(should be well typed. Cannot avoid due to sequentiality problem.)
379
	\end{definition}
380
	
381
	\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
382